
1

Medley Interlisp:

Interactive Programming Tools

(derived from Interlisp-D)

by

Stephen H. Kaisler, D.Sc

Version 1.0

November 2021

2

Table of Contents

Table of Contents .. 2
List of Figures ... 9
List of Tables .. 12
Introduction ... 14
1. A Display-Oriented Text Editor .. 16

1.1 Using TEdit... 16
1.1.1 Text Selection .. 19
1.1.2 Line Bar Selection ... 20
1.1.3 Using the Control Key ... 20
1.1.4 Using the Shift Key ... 21
1.1.5 Moving Text .. 21
1.1.6 Editing Operations ... 21
1.1.7 TEdit Command Menu .. 22
1.1.8 Evaluating an Expression .. 37

1.2 Invoking TEdit .. 38
1.2.1 Editing Files .. 39
1.2.2 Editing Display Streams .. 39
1.2.3 TEdit Control Properties ... 40
1.2.3.1 Text Font .. 40

1.3 TEdit Data Structures ... 45
1.3.1 The Text Stream .. 46
1.3.2 The Text Object ... 47
1.3.3 The Selection Object ... 54
1.3.4 The Line Descriptor Object ... 56
1.3.5 The Piece Object ... 59
1.3.6 The THISLINE Object .. 60
1.3.7 The Line Cache Object .. 61
1.3.8 The Character Looks Object.. 62
1.3.9 The Format Specification Object 63

1.4 TEdit User Interface Functions ... 65
1.4.1 Opening a Text Stream .. 65
1.4.2 Creating a Text Stream .. 66

3

1.4.2 Making a Selection in a Text Stream 67
1.4.3 Getting the Current Selection .. 69
1.4.4 Showing a Selection .. 69
1.4.5 Inserting into a Text Stream .. 71
1.4.6 Deleting Text from a Stream ... 73
1.4.7 Finding Text in a Text Stream 74
1.4.8 Generating Hardcopy of Text .. 76
1.4.9 Changing the Looks of Selected Characters 77
1.4.10 Getting the Character Looks of a Selection 81
1.4.11 Copying Character Looks .. 82
1.4.12 Quitting TEdit ... 84

1.5 TEdit System Variables .. 84
1.5.1 Pending Deletions ... 84
1.5.2 Default Format Specification .. 84
1.5.3 The Current Selection .. 85
1.5.4The Current Shift-Selection.. 85
1.5.5 The Current Move Selection ... 86
1.5.6 The Current Read Table .. 86
1.5.7 The Word Boundary Read Table................................... 86
1.5.8 TEdit Default Properties .. 86

2. Display-Oriented Structure Editor .. 88
2.1 Invoking DEdit ... 88

2.1.1 Editing Functions .. 89
2.1.2 Editing Variable Values .. 90
2.1.3 Editing a Property List .. 92
2.1.4 Editing File Commands ... 93
2.1.5 The Main DEdit Interface ... 95

2.2 DEdit Operation .. 96
2.2.1 The Selection Phase .. 97
2.2.2 The Execute Phase .. 100
2.2.3 Command Menu .. 101

2.3 DEdit Commands ... 103
2.3.1 After .. 103
2.3.2 Before .. 103
2.3.3 Delete .. 103

4

2.3.4 Replace .. 104
2.3.5 Switch .. 104
2.3.6 Parentheses Insertion ... 104
2.3.7 Parenthesis Removal ... 105
2.3.8 Undoing the Previous Command 105
2.3.9 Searching for Structure .. 106
2.3.10 Swapping Selections ... 106
2.3.11 Reprinting a Selection ... 106
2.3.12 Editing a Structure ... 107
2.3.13 Executing Arbitrary Editor Commands 107
2.3.14 Inserting a Break Around an Expression 108
2.3.15 Evaluating an Expression .. 108
2.3.16 Exiting from DEdit .. 108
2.3.17 DEdit Command List .. 108

Chapter Three.. 111
The Typein Editor (TTYIN) ... 111

3.1 Using the Mouse with TTYIN .. 112
3.1.1 Secondary Mouse Operations 112

3.2 Invoking TTYIN ... 113
3.2.1 Prompt Characters ... 114
3.2.2 Spelling Lists ... 116
3.2.3 Help Facility .. 117
3.2.4 The Options List .. 118
3.2.5 Echoing Input to a File .. 126
3.2.6 Tabbing Specifications .. 127
3.2.7 Preloading the Input Buffer ... 128
3.2.8 Read Table Mediation ... 128

3.3 TTYIN Editing Commands .. 129
3.4 TTYIN Macros ... 132

3.4.1 The ED Macro ... 132
3.4.2 The EE Macro ... 132
3.4.3 The BUF macro ... 133
3.4.4 The TV Macro ... 133
3.4.5 The FIX Macro .. 134

3.5 The ?= Handler ... 134

5

3.5.1 User Handling of ?= .. 134
3.5.2 Reading Intermediate Arguments 135
3.5.3 Printing Arguments for ?= ... 137
3.5.4 Enabling ?= Handling.. 138

3.6 TTYIN Utility Functions .. 139
3.6.1 Calling TTYIN as an Editor .. 139
3.6.2 Setting the TTYIN Window .. 142
3.6.3 Creating a TTYIN Scratch File 143

3.7 TTYIN Variables .. 144
3.7.1 Automatic Window Closing .. 144
3.7.2 Allowing Typeahead ... 144
3.7.3 Providing Alternative Completions 145
3.7.4 Showing Matching Parentheses................................... 145
3.7.5 Errorset Protection ... 145
3.7.6 Enabling Escape Completion 145
3.7.7 Caching the TTYIN Edit Window 146
3.7.8 Default Printing Function .. 147
3.7.9 Handling Comments .. 147

3.8 TTYIN READ Macros ... 147
3.9 Special Responses ... 149

4. Display Oriented Tools ... 151
4.1 The Interactive Display-Oriented Break Package 151

4.1.1 Invoking the Display Oriented Break Package 152
4.1.2 Enabling the Display-Oriented Break Package 157
4.1.3 Display-Oriented Break Package System Variables ... 158

4.2 The Inspector .. 161
4.2.1 Invoking the Inspector ... 162
4.2.2 Inspect Windows ... 170
4.2.3 Creating and Manipulating Inspector Windows 172
4.2.4 Inspect Commands .. 190
4.2.5 Interacting with Break Windows 191
4.2.6 Inspector Variables .. 192
4.2.7 Inspector Macros ... 194

4.3 The Grapher Utility .. 196
4.3.1 The Structure of a Graph ... 197

6

4.3.2 The Structure of a Graph Node 203
4.3.3 The Structure of a Link Description 206
4.3.4 Creating a Node ... 207
4.3.5 Displaying a Graph .. 211
4.3.6 Laying Out a Graph ... 218
4.3.7 Editing a Graph ... 230
4.3.8 Laying Out a Forest ... 232
4.3.9 Laying Out an S-Expression.. 233
4.3.10 Creating an Image Object for a Graph 235
4.3.11 Determining the Minimal Graph Region 236
4.3.12 Inverting a Graph Node ... 237
4.3.13 Resetting the Node Border .. 238
4.3.14 Resetting the Node's Label Shade 239
4.3.15 Dumping a Graph to a File .. 240
4.3.16 Reading a Graph from a File 242

5. Graphics .. 245
5.1 Basic Concepts ... 245

5.1.1 Brushes .. 245
5.1.2 Operations ... 257
5.1.3 Dashing ... 257

5.2 Lines and Curves .. 258
5.2.1 Drawing a Line .. 258
5.2.1.1 From the Current Position .. 258
5.2.2 Drawing Curves... 265
5.2.3 Drawing a Gray Box ... 268

5.3 Rectangles ... 270
5.3.1 Creating a Rectangle ... 271
5.3.2 Rectangle Functions .. 276
5.3.3 Rectangle Manipulation Functions 279

5.4 Closed Polygons ... 281
5.4.1 Drawing Circles... 281
5.4.2 Drawing Ellipses ... 283

5.5 Filling Objects with Texture ... 284
5.5.1 Filling Polygons .. 284
5.5.2 Filling a Circle ... 288

7

6. Process Management .. 290
6.1 Process Concepts .. 290

6.1.1 The Structure of a Process ... 291
6.1.2 The TTY Process ... 296
6.1.3 Handling the Mouse .. 303
6.1.4 Handling Interrupts ... 305
6.1.5 Enabling the Process World .. 307
6.1.6 The Process Status Window .. 308

6.2 Creating and Destroying Processes 310
6.2.1 Creating a Process ... 310
6.2.2 Killing a Process.. 314

6.3 Process Properties ... 314
6.3.1 Getting and Setting Process Properties 315
6.3.2 Process Name .. 316
6.3.3 The Process Body .. 316
6.3.4 The Restart Flag .. 317
6.3.5 A Restart Form .. 317
6.3.6 Processing Before an Exit ... 318
6.3.7 Processing After an Exit .. 318
6.3.8 An Information Hook .. 318
6.3.9 Handling the TTY Display Stream 319

6.4 Process Management Functions ... 319
6.4.1 Testing for an Active Process 319
6.4.2 Testing for a Deleted Process 320
6.4.3 Testing for a Finished Process..................................... 321
6.4.4 Finding a Process Handle .. 322
6.4.5 Restarting a Process .. 323
6.4.6 Returning a Value from a Process 324
6.4.7 Mapping Across Processes .. 325

6.5 Process Control Functions .. 327
6.5.1 Suspending a Process .. 327
6.5.2 Awakening a Process .. 327
6.5.3 Blocking a Process .. 328
6.5.4 Dismissing a Process ... 329
6.5.5 Evaluating Expressions in a Processes' Context 330

8

6.6 Interprocess Communication .. 333
6.6.1 Creating an Event .. 334
6.6.2 Awaiting an Event ... 334
6.6.3 Signalling Completion of an Event 335

6.7 Monitors: Sharing Data Structures 336
6.7.1 Creating a Monitor .. 337
6.7.3 Evaluating Expressions under a Monitor Lock 338
6.7.4 Awaiting a Monitor Event ... 339
6.7.5 Obtaining a Monitor Lock ... 341
6.7.6 Releasing a Monitor Lock ... 342

Index ... 343

9

List of Figures

1-1. TEdit Editing Window

1-2. Normal Editing Cursor

1-3. Line Bar Cursor

1-4. TEdit Command Menu
1-5. Find Command Result
1-6. Expanded TEdit Command Menu
1-7. The Character Looks Menu
1-8. Using the Character Looks Menu
1-9. Using the Character Looks Menu
1-10. The Paragraph Looks Menu
1-11. The Page Layout Menu
1-12. Evaluating an Expression
1-13. Example of Initial Text Selection
1-14. TEdit Text Object Example
1-15. TEdit Selection Object Example
1-16. TEdit Line Descriptor Object Example
1-17. TEdit Piece Object Example
1-18. TEdit THISLINE Object Example
1-19. Line Cache Object Example
1-20 TEDIT.SHOWSEL Example
1-21. TEDIT.INSERT Example
1-22. TEDIT.INSERT with NIL selection
1-23. TEDIT.HARDCOPY Example
1-24. Example 1 of TEDIT.LOOKS
1-25. Example 2 of TEDIT.LOOKS
1-26. Example of TEDIT.COPY.LOOKS

2-1. Editing a Function Definition
2-2. Editing a Variable Value
2-3. Editing of a Property List
2-4. Editing File Package Commands
2-5. Selecting an Item via the LEFT Mouse Button

10

2-6. Selecting a Containing List
2-7.Shift-Selection to the Type-in Buffer

3-1. Example for LOOK.AT.ARGS
3-2. TTYINEDIT Editing a String
3-3. TTYINEDIT Editing a Function

4-1 The Break Window
4-2 Display-Oriented Break Package Command Menu
4-3 Inspecting a Stack Frame
4-4 Stack Frame Inspection Commands
4-5 Setting EMODE
4-6 Operations on a Stack Frame
4-7 Inspection of an IMAGEOBJ Record
4-8 Example of INSPECTCODE
4-9 Inspecting in a Break Window
4-10 Inspecting via EDITV
4-11 INSPECT/ARRAY Example
4-12 A Sample Inspect Window
4-13 Inspector Window with Property Menu
4-14 Inspector Window with Property Value Menu
4-15 Inspect Window for a Text Object
4-16 Inspect Window Properties
4-17 FETCHFN Example
4-18. STOREFN Example
4-19 INSPECTW.REPLACE Example
4-20 INSPECTW.SELECTITEM Example
4-21 Example of SHOWGRAPH
4-22. Example of Add Node
4-23. Adding a Link Example
4-24- Examples of Enlarging and Reducing Labels
4-25 A Graph laid out in COMPACT Format
4-26. A graph laid out in FAST Format
4-27. A graph laid out in LATTICE Format
4-28. A Graph laid out in REVERSE Format

11

4-29 Example of a COMPACT HORIZONTAL Graph
4-30. Example of a COMPACT VERTICAL Graph

5-1. An Example of a ROUND Brush with dashing
5-2. Example of a ROUND Brush
5-3. Example of a SQUARE Brush
5-4. Menu of Brush Shades
5-5. Tailoring a 4x4 Shade
5-6. The Tailored Shade
5-7. A Checkered Brush
5-8. A DRAWTO Example
5-9. Example of RELDRAWTO
5-10. Example of DRAWLINE
5-11. An Example of DRAWBETWEEN
5-12. A DRAWCURVE Example
5-13. Another DRAWCURVE Example
5-14. Example of DRAWGRAYBOX
5-15- RECTANGLE Example
5-16. DRAWCIRCLE Example
5-17. DRAWELLIPSE Example
5-18. An Example Using FILLPOLYGON
5-19. Another Example of FILLPOLYGON
5-20. FILLCIRCLE Example

6.1 Depiction of HELP Interrupt Menu
6.2 PROCESS DEMO WINDOW

12

List of Tables

1-1. Effect of Mouse Buttons in Text Region

1-2. Effect of Mouse Buttons in the Line Bar
1-3. Expanded Menu Items
1-4. Text Stream Record Structure
1-5. Text Object Record Structure
1-6. The Selection Object
1-7. The Line Descriptor Object
1-8. The Piece Object
1-9. Structure of the THISLINE Object
1-10. Structure of the Line Cache Object
1-11. The Character Looks Object
1-12. Structure of the Format Specification
1-13. TEDIT.INSERT Options
1-14. NEWLOOKS Property Values

2-1. Mouse Button Effects
2-2. Editing Commands in Type-In Buffer
2-3. Parenthesis Insertion Subcommands
2-4. Parenthesis Removal Subcommands
2-5. Undo Subcommands
2-6. Swap Subcommands
2-7. Exit Subcommands

3-1. TTYIN Mouse Button Usage
3-2. TTYIN Secondary Mouse Button Usage
3-3. Selection Functions
3-4. Reading Commands
3-5. TTYIN Editing Commands
3-6. ?=FN Values
3-7. ?= Handling Values
3-8. TTYIN Read Macro Codes

13

3-9. TTYIN Read Macro Response

4-1. AUTOBACKTRACEFLG Values
4-2. Common Menu Entries
4-3. Inspect Window Middle Mouse Button Commands
4-4. Graph Record Fields
4-5. SIDESFLG Interpretation
4-6. SIDESFLG Interpretation
4-7. GRAPHNODE Fields
4-8. Graphnode Border Values
4-9. GraphNode Shade Values
4-10. Graph Editing Functions
4-11. Basic Formats
4-12. Graph Orientation Values
4-13. MARK Format Values
4-14. Node Distance Criteria
4-15. Boxing Values

6-1. Process Structure
6-2. Process Status Window Commands
6-3. RESTARTABLE Values
6-4. AFTEREXIT Values
6-5. Event Structure
6-6. Monitor Lock Structure

INTRODUCTION

14

Introduction

This volume focuses on a set of tools for the interactive programming
interface for Medley Interlisp. I tried to select the tools that I felt were
extremely useful to the Interlisp user. Some tools were omitted due
to space limitations. The decisions are solely mine.

 Chapter 1 describes the Display-oriented Text Editor, TEdit.
TEdit is a modeless text editor that is used to create large text files. It
incorporates many of the powerful ideas that were first available in
the Bravo Text Editor on the Alto. An essential idea that is supported
by TEdit is that each editing session is an independent process. Thus,
you may edit multiple documents - perhaps using a "cut and paste"
method of composition. TEdit allows you to adjust the individual
appearance of characters, string of characters, paragraphs of text, and
even the entire page layout. Most of TEdit is menu-driven which
makes it easy to modify text appearances using the "point and click"
paradigm.

 Chapter 2 describes the Display Oriented Structure Editor, DEdit.
DEdit "understands" Interlisp data and function structures. I have
found that the best way to learn DEdit is to play with it. Rather than
reading a manual, one learns to use DEdit by interactive
experimentation. Note that this paradigm has been successfully
parlayed by Apple Computer in its Macintosh family.

 Chapter 3 describes the Typein Editor, TTYIN. TTYIN provides
a very flexible editing environment for reading input that is typed in
by the user. Many command interfaces have been built using the
TTYIN subsystem. Several of Interlisp's subsystems, including the
Inspector, use portions of the TTYIN subsystem to interact with the
user.

INTRODUCTION

15

 Chapter 4 describes an enhanced Break Package that uses the
display capabilities to debug and trace programs. Basically, it adds a
window interface to the Break Package described in Interlisp: The

Language and Its Usage by SHKaisler. However, I have found that
this interface greatly improves one’s ability to debug programs -
particularly when you can have several windows open on different
functions.

 An integral Inspector allows the user to view code in one
window, the stack in another, and the output of a running program in
another while attempting to debug a program. The Inspector is
oriented to examining all the data structures supported by Interlisp.
In addition, it contains a programmable interface which allows you
to construct INSPECTWs on your own data structures.

 Finally, this chapter describes the Grapher Utility which allows
you to draw directed graphs and lattices from data structures. I
believe that this program is well worth the time spent to master its
intricacies because of the visual power it gives the user over complex
environments.

 Chapter 5 describes the Graphics Package incorporated into
Medley Interlisp. Most of the window management routines are built
on top of this package. You can create complex interactive graphics
packages by combining the capabilities in this package with the
image streams subsystem.

 Chapter 6 describes the Process Management Package, a package
of functions that allows the user to initiate and control multiple
asynchronously executing processes. Essential to the multitasking
environment are events (somewhat like semaphores) and monitors
which are based on Hoare's ideas.

TEdit

16

1. A Display-Oriented Text Editor

 The Text Editor (TEdit) is a display-oriented, modeless text
editor based on principles similar to those employed to implement
DEDIT. It can be used to create and edit large text files. Within a
text file, you may apply a variety of formatting commands to affect
the appearance of characters and sequence of characters, paragraphs,
and page layouts. In addition, using image streams, you are able to
insert image objects into a TEdit file in order to create system
documentation.

 Because TEdit represents a considerable piece of software, I
have not tried to exhaustively describe all of its features. Some of
the more esoteric functions have been omitted in the interest of
space. You may refer to the description of TEdit in the Lisp Library
Manual for a description of the omitted features.

1.1 Using TEdit

 When TEdit is activated, a window is opened with the

appropriate data structure displayed in its editing pane. If no object

is to be edited, the TEdit window is opened with a clear editing pane.

Figure 1-1 depicts a TEdit window.

TEdit

17

Figure 1.1. TEdit Editing Window

 TEdit operates on pieces of text which you select via the mouse.

The selected text is highlighted (e.g., inverted). A set of commands

is available through the middle mouse button.

 The editing pane has two regions which are mouse-sensitive.

The larger region which contains the displayed text causes the cursor

to take the normal up-and-left pointing arrow shape. Inside the left

edge of the editing pane is the line bar. When the cursor moves into

the line bar, the cursor takes the shape of an up-and-right pointing

arrow. Figures 1-2 and 1-3 depict these two shapes.

 Above the Editing pane is the title bar which identifies the data

structure that is currently being edited. Placing the cursor in the title

bar and pressing the middle mouse button will cause the TEdit

Command Menu to pop up.

 Above the title bar is the TEdit prompt pane. When you activate

a TEdit function, a prompt message may be displayed here. If data

are required by TEdit to perform the command, the data are entered

in this pane.

TEdit

18

Figure 1-2. Normal Editing Cursor

TEdit

19

Figure 1-3. Line Bar Cursor

 The location of the cursor determines the type of selection of

text that is made by TEdit.

1.1.1 Text Selection

 To change text that appears in the edit pane, you must first select

it and then give a command to affect the change. While the cursor is

TEdit

20

in text region of the edit pane, the mouse buttons have the function

presented in Table 1-1:

Table 1-1. Effect of Mouse Buttons in Text Region

Button Effect

LEFT Selects a character in the text.

MIDDLE Selects a word in the text.

RIGHT Extends the selection to include additional

items of the same type.

 When you have selected text, it is highlighted by underlining or

reverse video.

1.1.2 Line Bar Selection

 While the cursor is in the line bar region of the edit pane, the
mouse buttons have the functions presented in Table 1-2.:

Table 1-2. Effect of Mouse Buttons in the Line Bar

Button Effect

LEFT Selects the line corresponding to the hot
spot of the cursor.

MIDDLE Selects the paragraph which the cursor is
next to.

RIGHT Extends the selection to include additional
items of the same type.

1.1.3 Using the Control Key

 If you hold the control key (CTRL) down while selecting text,
the text is displayed as white-on-black. When the CTRL key is
released, the selected text will be deleted from the text region. You
can abort the delete operation by pressing any mouse button and then

TEdit

21

releasing the CTRL key. Of course, you must also release the mouse
button.

1.1.4 Using the Shift Key

 If you hold the shift key down while making a selection, it
indicates the source field for a copy operation. The selected text will
be underlined with a dashed line. When you release the SHIFT key,
the underlined text will be copied to the current location of the caret.
Copying will work between TEdit windows. You can abort a copy
operation by pressing any mouse button and then releasing the
SHIFT key. Of course, you must also release the mouse button.

1.1.5 Moving Text

 You may move text from one location to another within the
same or a different edit window. To do so, you must hold the CTRL
and SHIFT keys down while selecting the text to be moved. The text
to be moved will be displayed in reverse video. When the CTRL and
SHIFT keys are released, the text will be moved to the current
location of the caret.

 You may abort a move operation by pressing any mouse button
and then releasing the CTRL and SHIFT keys. Of course, you must
also release the mouse button.

1.1.6 Editing Operations

 TEdit provides you with several editing operations through the
use of keys on the keyboard. You first make a selection with the
mouse and then press the appropriate key(s).

1.1.6.1 Inserting Text

TEdit

22

 A caret indicates the current location, called the type-in point, in
the text stream for the insertion of new text. New text may be typed
from the keyboard or copied from another location within the same
or a different edit window. There is only one type-in point active at
a time. You must remember, when pointing with the cursor at a
location in the text, to press the left mouse button to let TEdit know
about the new type-in point.

 The BACKSPACE key is used to delete characters one key at
a time. In lieu of the BACKSPACE key, you may also type CTRL-
A. To delete an entire word, type CTRL-W.

1.1.6.2 Deleting Text

 You may delete the currently selected text by pressing the DEL
key. TEdit automatically closes the gap left by the deleted text.

1.1.6.3 Undoing an Edit Operation

 You may undo the most recent edit operation by pressing the
UNDO key. The Undo operation is itself undo-able. You cannot
back up more than one edit operation. The location of the UNDO
key depends on the type of workstation and keyboard that you have.

1.1.6.4 Redoing an Edit Operation

You may redo an edit operation by pressing the ESCAPE key (the
ESC key)or the Redo key (on the Xerox 1186, this is called the
Again key). This causes the most recent edit operation to be redone
on the current selection. Thus, you may insert text, move the caret
to a new location, hit the Redo key, and see the same text inserted
in the new location.

1.1.7 TEdit Command Menu

TEdit

23

 You can activate the TEdit Command Menu by moving the
cursor to the edit window's title pane and pressing the middle mouse
button. A pop-up menu displaying the TEdit commands will appear
at the current location of the cursor. The following sections describe
the commands and their effect. Figure 1-4 depicts the TEdit
Command Menu.

Figure 1-4. TEdit Command Menu

 Although the following discussion refers to files, in fact the
commands apply to any object which TEdit is capable of editing.

1.1.7.1 Writing a New Version of the File

TEdit

24

 Selecting the Put command from the TEdit command menu
causes a new version of the file to be written to the storage media on
which the file is located. TEdit prompts you for a file name, but
offers the current file name as a default. Pressing the Return key
causes the next version of the file to be written. Alternatively, you
may alter the file name and then press the Return key whence a file
by the specified name is written on the storage madia.

 The Put command has two options which are identified by
moving the cursor to the right past the gray triangle. These options
are:

• Plain-Text
• Old-Format

 When Put is selected, TEdit prompts you to specify a file name
with a message in the TEdit Prompt pane. The form of the message
is:

File to Put to: {DSK}<LISPFILES>EXPORTS.ALL

 The cursor is placed after the last letter of the file name. Thus,
if you wish to change the file name, you may backspace over the
characters that you wish to change and, then, type the new file name.

 If you are editing a file, the default file name is the name of the
current file. TEdit uses TTYIN to manage the entry of data in this
pane.

 The Plain-Text option strips out editing and format characters
such as font information and stores a plain ASCII version of the text
on the file.

 The Old-Format is retained for compatibility with previous
versions of TEdit.

TEdit

25

1.1.7.2 Getting a New File to Edit

 Selecting the Get command from the TEdit command menu
reads a new file into the TEdit window for editing. The previous file
is [usnot]us saved. TEdit will prompt you for the name of a file to
read in in the prompt window.

 The Get command provides an optional unformatted read
capability. When you drag the cursor to the right of the gray triangle,
the option Unformatted Get pops up. You may select this option
by moving the cursor into the box and releasing the mouse button.

 TEdit prompts you for the file to read by displaying the
following message in the TEdit Prompt pane:

File to Get:

 The cursor is placed one space beyond the ":" to indicate that
you should type the name of the file there.

 Note that you should type the complete file name, including
the directory name. Otherwise, TEdit defaults to your current
directory. If the file is located on another host in a network, you
must also supply the host name.

1.1.7.3 Including One File in Another File

 Selecting the Include command from the TEdit command menu
allows you to copy the contents of a specified file into the edit
window at the current location of the caret. TEdit prompts you for
the name of the file to include in the prompt window. The file's
contents are copied into the TEdit window at the current location of
the caret.

TEdit

26

1.1.7.4 Exiting TEdit

 Selecting the Quit command from the TEdit command menu
allows you to exit TEdit without saving the file that you are editing.
If you have made changes to the file since you last saved it on the
storage media, you will be asked to confirm the immediate exit.

1.1.7.5 Finding a Text String

 Selecting the Find command from the TEdit command menu
allows you to search for a string of text within the file that you are
editing. TEdit prompts you for the search string through a query
displayed in the prompt window. It then searches for the specified
text string from the caret through the end of the file. If the text string
is found (e.g., the first instance), TEdit positions the caret to the left
of the string. If the text string is not found, TEdit displays the
message "not found" in the TEdit prompt pane.

 When you select Find in the TEdit menu. You are prompted to
enter the text by the message "Text to Find:" in the TEdit prompt
pane. You enter "FORTRAN". TEdit displays the message
"Searching ... Done" in the prompt pane and places the caret to the
left of the text in the edit pane. FORTRAN is underlined as depicted
in Figure 1-5.

TEdit

27

Figure 1-5. Find Command Result

1.1.7.6 Substituting One Text String for Another

 Selecting the Substitute command from the TEdit command
menu allows you to replace one text string by another. You are
prompted for the the search string and the replacement string in the
prompt window. In the default case, all instances of the search string
will be replaced by the replacement string in the current selection.

 When you select Substitute, TEdit prompts you to enter the
search string in the prompt pane via the message "Search string:".
After you enter the search string, it requests a replacement string via
the message "Replace string:". After you type the replacement

TEdit

28

string, TEdit queries you concerning confirmation of each
replacement via "Ask before each replace? No". If you press <CR>,
TEdit performs a global replacement. Alternatively, you may type
"Yes" and TEdit will request confirmation before each replacement.

1.1.7.7 Changing the Appearance of Text

 Selecting the Looks command from the TEdit command menu
allows you to change the appearance of the current selection. The
characteristics which may be changed are: the font, the character
size, and the face.

 Three menus pop up in sequence from which you make
selections for the font, character size, and face.

The Font Menu

The Font Menu allows you to select a font from the fonts known to
TEdit by searching the font directories. The current fonts that may
be displayed are:

 Classic
 Modern
 Terminal
 Titan
 Gacha
 Helvetica
 Times Roman
 Other

The Type Size Menu

 The Type Size Menu allows you to determine the type size.
TEdit determines the type sizes available for the fonts that it has
access to by searching the font directories. In my system the type

TEdit

29

sizes are displayed as a menu of 3 columns by 4 rows. However, the
number of type sizes varies with the available fonts.

The Face Menu

 The Face Menu allows you to change the face of the font that
you have selected. The Face menu is composed of four options:

 Bold
 Italic
 Bold Italic
 Regular

 You may avoid changing any characteristic by clicking the left
mouse button while the cursor is located outside of the
corresponding menu.

1.1.7.8 TEdit Expanded Menu

 Selecting the Expanded Menu command from the TEdit
command menu causes TEdit to display an Expanded TEdit Menu
above the prompt pane. Figure 1-6 depicts the Expanded Menu. The
following sections discuss the commands in the Expanded Menu.

TEdit

30

Figure 1-6. Expanded TEdit Command Menu

 Note that some of the commands in the primary TEdit menu are
replicated here. You may use the Get, Put, Find, and Substitute
commands by placing the cursor between the curly brackets and
typing the file name or string (respectively) that is the argument for
that command.

 You use the Confirm entry to confirm an operation.

TEdit

31

Table 1-3. Expanded Menu Items

Items Description

Page Layout,
Char Looks, and
Para Looks

All cause additional menus to be
"stacked" on top of the expanded TEdit
menu.

All This item causes all text in the edit pane
to be selected. This allows you to apply
a single operation, such as changing the
font of the text, at once.

Unformatted This item treats the text as unformatted.
This last command is useful when you
are creating text which is to be sent to
another computer system.

Hardcopy This item causes TEdit to print a copy of
your file on the default printer. It
assumes 1 inch margins around the text
of the document.

PRINTERMODE This item controls the type of printer to
which TEdit will send your document
for printing.

 Using the Expanded Menu entry, you can display three
additional menus which allow you to modify the appearance of
characters, paragraphs, and pages. For more detailed information,
you should consult the TEdit documentation.

1.1.7.9 The Character Looks Menu

 The Character Looks Menu is depicted in Figure 1.7. It allows
you to modify the properties of a text selection including the font,
the face, the size, whether or not it is underlined or overstruck, and
whether or not it is sub- or super-scripted. Two examples using the
Character Looks Menu is depicted in Figures 1-8 and 1-9.

TEdit

32

Figure 1-7. The Character Looks Menu

TEdit

33

Figure 1-8. Using the Character Looks Menu

TEdit

34

Figure

1.1.7.10 Paragraph Looks Menu

 The Paragraph Looks Menu is depicted in Figure 1-10. It allows
you to modify the appearance of a paragraph. Basically, you can
determine the justification of the lines which compose the
paragraph. You may also specify tabbing for the paragraph and
whether or not a new page should occur before or after the
paragraph.

TEdit

35

Figure 1-10. The Paragraph Looks Menu

1.1.7.11 Page Layout Menu

 The Page Layout Menu is depicted in Figure 1-11. It allows you
to specify how individual pages or a sequence of pages in the
document will appear. You may specify the left and right margins,
the page numbering, the number of header lines for the page, the
character looks for the page numbers (including fonts), and the page
size. You may also specify whether the image is rotated on the page
to landscape mode.

TEdit

36

Figure

TEdit

37

1.1.8 Evaluating an Expression

 In some cases, you may want to insert the value of an expression
in a TEdit document. By pressing <CTRL>O, you can open a
window (see Figure 1-12) in which you can type an expression. The
window is created by TTYIN. After you have typed the expression
and pressed <CR>, the value of the expression will be inserted at the
current location of the caret.

Figure 1-12. Evaluating an Expression

TEdit

38

1.2 Invoking TEdit

 You may start TEdit be either selecting the menu entry in the
Background Menu or executing a function. You may invoke TEdit
by executing the function of the same name, TEDIT, which takes
the form:

 Function: TEDIT
 # Arguments: 4
 Arguments: 1) TEXT, a text specification
 2) WINDOW, a window handle
 3) DON'TSPAWN, a new process
 flag
 4) PROPS, a property list
 containing property/value
 pairs that control the editing session
Value: A process handle.

 TEdit may be invoked on different types of text objects: files,
display streams, strings, or arbitrary Interlisp objects. These cases
are discussed in Sections 1.2.1 and 1.2.2.

 WINDOW specifies a window handle which will be used to
display the text for editing. If WINDOW is NIL, you are prompted
to create a window. TEdit preserves the title associated with the
window, if any, while it is using the window for editing tasks. If the
window has no title, TEdit supplies one.

 DON'TSPAWN is a flag used to control the spawning of an
independent editing process. TEdit will spawn a new process to
perform the editing tasks. To prevent the creation of a new process,
invoke TEdit with DON'TSPAWN set to T.

TEdit

39

 PROPS is a list of property/value pairs that specify options
which control the editing session. The properties are described in
Section 1.2.3. Consider the following example:

<-(TEDIT myext awindow T)
(A complex number is a generalization of a real number that is
introduced in Mathematics so that all polynomial equations with
real coefficients may have solutions. A complex number is
composed of two parts: a real part and an imaginary part. Most
conventional languages, developed for numeric data processing,
support the notion of complex numbers. For example, FORTRAN
has a
type declaration COMPLEX which results in a specific storage
specification and set of operations upon complex numbers.)

 In this case TEDIT did not spawn a process for editing. Thus,
TEDIT returned the contents of the window as you edited it. This is
useful for typing in information quickly, while having access to
sophisticated editing tools. On the other hand, if we spawned a
process, the TEDIT would return the process handle as follows:

<-(TEDIT mytext awindow)
{PROCESS}#77,110700

1.2.1 Editing Files

 If TEXT is an atom, it is assumed to be a file name. The
contents of the file, if it exists, are read into the window associated
with TEdit. For example, to edit the contents of EXPORTS.ALL:

<-(TEDIT 'EXPORTS.ALL)
{PROCESS}#71,22300

1.2.2 Editing Display Streams

TEdit

40

 TEXT may have a display stream handle as its value. The
contents of the display stream are displayed in the TEdit window.
Consider the following example:

<-(SETQ mystream (OPENTEXTSTREAM mytext))
{STREAM}#64,126000

<-(TEDIT mystream)
{PROCESS}#56,56500

 Note that we had to open the display stream (in this case a text
stream) before its contents could be displayed for editing.
Otherwise, you will receive the message "FILE NOT OPEN".

1.2.3 TEdit Control Properties

 You may specify values for a number of control properties
which allow you to customize your editing session. These properties
are discussed in the following sections.

1.2.3.1 Text Font

 TEdit will display text using inherent font information. If no
font is specified with the text, TEdit uses the font specified by the
variable, TEDIT.DEFAULT.FONT, whose initial value is:

<-TEdit.DEFAULT.FONT
NIL

 This causes TEdit to use the fonts specified in the system font
profile. You may override the default font when you invoke TEdit
by specifying a value for the property FONT in PROPS. This
property will only be used if the LOOKS property is not specified.

TEdit

41

1.2.3.2 Exit Procedure

 You may specify a function (or list of functions) to be called
when you Quit TEdit by assigning a value to the property QUITFN
in PROPS. This function will be called before TEdit terminates.
However, if the function returns the atom DON'T, TEdit does not
terminate.

 Typically, this function will perform any cleanup operations or
formatting prior to closing a document. If any of the functions
returns T, you are not asked to confirm the exit quit command - even
if the document has unsaved changes.

1.2.3.3 Loop Procedure

 You may specify a function to be called each time TEdit runs
through the character read loop by assigning a value to the property
LOOPFN in PROPS. Typically, you will use this procedure to
perform macro substitution as TEdit reads individual characters.
Note that you must also consider the impact of the read tables on
Tedit's performance.

1.2.3.4 Character Entry Procedure

 You may specify a function to be called for each character that
is typed in by assigning a value to the property CHARFN in PROPS.
This function operates similarly to the one specified for LOOPFN.
However, this function applies only to characters which are typed
into the edit pane.

1.2.3.5 Text Selection Function

 You may specify a function to be called each time a text
selection is made in the window using the mouse by assigning a
value to the property SELFN in PROPS. This function is useful if

TEdit

42

you want to protect certain areas of a window from being changed
by the user. Using this capability, you can use TEdit to build a forms
manager.

1.2.3.6 Text Terminal Table

 You may specify a terminal table for displaying characters in
alternative ways by assigning a value to the property TERMTABLE
in PROPS.

1.2.3.7 Read-Only Windows

 You may specify that the text display window will be a read-
only window by including this atom in PROPS. In a read-only
window, you may only perform shift-select operations (see Section
1.1.4).

 Read-Only windows are useful for inspecting original text
which should not be deleted.

1.2.3.8 Initial Text Selection

 You may specify the text that should be selected upon entry to
TEdit by assigning a value to the property SEL in PROPS. This
value may be a selection handle, a character index, or a two element
list consisting of a character index and the number of characters to
be selected. If the value of this property is the atom DON'T, then
nothing will be selected initially. This is the default value. Consider
the example:

<-(TEDIT MYTEXT IOWINDOW NIL '(SEL (23 14)))
{PROCESS}#77,110000

TEdit

43

which displays the value of MYTEXT in the edit pane. The word
"generalization" is underlined in the edit pane to indicate it has
been selected (see Figure 1-13).

Figure 1-13. Example of Initial Text Selection

1.2.3.9 Middle Button Menu

 The middle mouse button, when pressed in the edit window's
title region, will display a user-programmable menu. You may
specify the menu handle that is to be displayed when you press the
middle mouse button by assigning a value to the property MENU in
PROPS.

 The value may be either a menu handle, whence the menu will
be displayed, or a list of menu items. In the latter case, TEdit

TEdit

44

constructs a menu and displays it when the middle mouse button is
pressed.

1.2.3.10 TEdit Cleanup Function

 You may specify a function to be called after TEdit has
terminated by assigning a value to the property AFTERQUITFN in
PROPS. This function will normally be used when you have called
TEdit from within a program without creating a new process.
Because the edited results are returned by TEdit, you may want to
perform additional processing on them before storing them
someplace.

1.2.3.11 PROMPTWINDOW Specification

 You may specify a window to be used for unscheduled user
interactions, e.g., an alternative prompt window by assigning a value
to the property PROMPTWINDOW. This window overrides the
window normally used by TEdit. If the value is DON'T, the TEdit
will use the main prompt window.

1.2.3.12 Alternative Title Menus

 You may specify alternative menus to be displayed when the
left or middle mouse buttons are pressed in the edit window's title
region by assigning a value to the property TITLEMENUFN in
PROPS.

1.2.3.13 Character Looks

 The value of the property LOOKS specifies the default character
looks for characters displayed in the text pane. This value may be a
font descriptor, a CHARLOOKS handle, or a property list of
character looks properties that is acceptable to TEDIT.LOOKS (see
Section 1.4.9).

TEdit

45

1.2.3.14 Paragraph Looks

 The value of the property PARALOOKS specifies the default
paragraph looks to be used for paragraphs in the text being edited.
Its value may be either a FMTSPEC handle or a property list of
paragraph format properties that is acceptable to
TEDIT.PARALOOKS.

1.2.3.15 Caret Looks

 The value of CARETLOOKSFN is a function that is called
whenever a new caret looks is to be set. If it returns NIL, the looks
of the caret will be changed. If it returns a CHARLOOKS handle,
this will be used in place of any candidate looks data structure.
Usually, you will use this function when you must control the
appearance of text that is typed in by the user.

1.2.3.16 The Default Character Looks

 You may specify the default character looks (e.g., font, size,
family, etc.) that are to be used when entering or displaying text if
the text itself does not have explicit character looks. You do so by
assigning a value to the LOOKS property which may be:

• a font descriptor
• a property list that is acceptable to TEDIT.LOOKS
• a CHARLOOKS handle

1.3 TEdit Data Structures

 TEdit uses a large number of data structures in order to
manipulate the text displayed in its editing window. All of these data
structures are described in this section with examples of the values
that their fields might take.

TEdit

46

1.3.1 The Text Stream

 The Text Stream is a record structure that describes the source
of text that is displayed in the TEdit Window. Typically, this source
will be a file stored on an external disk. The fields of the record
structure are described in Table 1-4.

Table 1-4. Text Stream Record Structure

Field Name Usage

REALFILE The file which underlies the current
piece of text.

CHARSLEFT The number of characters that will be
left in the current piece of text the
next time the file crosses a page
boundary.

TEXTOBJ The handle of the Text Object that is
editing this text.

PIECE The handle of the piece from which
characters are currently being fetched
or to which they are being put.

PCNO The position of the piece in the piece
table.

PCSTARTPG The underlying file page number that
this piece starts on.

PCSTARTCH The character within the page of the
underlying file that this piece starts
on.

PCOFFSET The offset into the current piece, as of
the last page crossing.

CURRENTLOOKS The CHARLOOKS object that is
currently applicable to the characters
being taken from the stream.

CURRENTPARALOOKS The FMTSPEC object that is currently
applicable to the characters being
taken from the stream.

TEdit

47

CURRENTIMAGESTREAM The image stream object to which the
text is currently being sent for display.

LOOKSUPDATEFN A function that is called each time you
change the character looks of a piece
of text.

FATSTREAMP T, if the current piece is 16 bit
characters.

 A Text Stream is created by the function
OPENTEXTSTREAM. The usual stream operations may be applied
to this data structure: BIN, SETFILEPTR, GETFILEPTR, and
GETEOFPTR. BOUT inserts a character into the stream at the
current position of the file pointer. When editing in a window, the
stream handle can be determined using the function
TEXTSTREAM.

1.3.2 The Text Object

 A Text Object is a record structure used by TEdit to store its
state information about the text that is currently being edited. The
fields of the record structure are described in Table 1-5..

Table 1-5. Text Object Record Structure

Field Description

\DIRTY A flag indicating whether the
object has been modified or not.

PCTB The piece table (pointer to the first
entry)

TEXTLEN The current number of characters in
the text.

\INSERTPC A piece object that holds characters
typed by the user.

\INSERTPCNO The piece number of the input
piece.

TEdit

48

\INSERTNEXTCHAR The character number of the next
character which is typed into that
piece.

\INSERTLEFT The amount of space left in the
type-in piece.

\INSERTLEN The number of characters already
in the piece.

\INSERTSTRING The string which the piece
describes.

\INSERTFIRSTCH The character number in the text of
the first character in the piece.

\INSERTPCVALID T, if its okay to use the cached
piece, but set to NIL if you require
that each insertion or deletion
require a new piece

TEdit

49

Table 1-5. Text Object Record Structure (Continued)

Field Description

\WINDOW The window(s) where the text
object is displayed. If its value is
NIL, then there is no edit window
for this text. There will be more
than one window if the main editing
window has been
divided into several panes.

MOUSEREGION The section of the edit pane that the
mouse is in.

LINES A pointer to the top of a chain of
line descriptors for the displayed
text.

DS The display stream where the text
object is displayed.

SEL The current selection within the text
object; actually, the handle of its
record structure.

SCRATCHSEL The scratch space for the selection
code; actually, a pointer to a
temporary SELECTION object.

MOVESEL The source of the next MOVE of
text.

SHIFTEDSEL The source for the next COPY.
DELETESEL The text to be deleted very soon

now.
WRIGHT The right edge of the window where

this text is displayed.
WTOP The top of the window or region.
WBOTTOM The bottom of the window or

region.
WLEFT The left edge of the window or

region.

TEdit

50

TXTFILE The original text file that is
currently being edited.

\XDIRTY T if the text object was changed
since it was last saved.

STREAMHINT A pointer to the TEXTOFD stream
which gives access to this text
object.

EDITFINISHFLG T, if the user has requested the
closing of the editor. TEdit halts
after the next pass through the
polling loop if this flag is set. No
check is made for unsaved changes.
Unless it is T, the value of
EDITFINISHEDFLG will be
returned as the result of TEdit
(unless it was called with
DON'TSPAWN equal to T).

CARET Describes the flashing caret for the
editing window.

CARETLOOKS The font to be used for inserted text.
WINDOWTITLE The title of the TEdit editing

window.
THISLINE A data structure handle (see below)

describing the current line in the
object.

MENUFLG T, if this text object is a TEdit-style
menu

FMTSPEC The default formatting specification
to be used when formatting
paragraphs.

FORMATTEDP T, if this document will contain
paragraph formatting information.

TEdit

51

Table 1-5. Text Object Record Structure (Continued)

Field Description

TXTREADONLY Indicates text is subject to shift
selection only.

TXTTERMSA Special instructions for
displaying characters on the
screen.

EDITOPACTIVE T, if there is an editing
operation in progress; it is used
to interlock the TEdit menu.

DEFAULTCHARLOOKS The default character looks, if
any, to be applied to characters
entering the file from outside
(i.e., typing).

TXTRTBL The read table to be used by
the command loop for
command dispatch.

TXTWTBL The read table to be used to
decide when a word breaks in
text.

EDITPROPS The PROPSO that were passed
to TEDit.

BLUEPENDINGDELETE T, if the next insertion into a
document is to be preceded by
the deletion of the then-current
selection.

TXTHISTORY The history list for this session
of TEDit.

SELWINDOW The window in which the last
real selection was made for the
edit. It is used to control the
placement of the caret.

TEdit

52

PROMPTWINDOW A window used for
unscheduled interactions with
the user.

DISPLAYCACHE The bitmap that is used when
building an image of a line to
be displayed.

DISPLAYCACHEDS The display stream that is used
to build line images.

DISPLAYHCPYDS The display stream that is used
to build images for hardcopy
simulation mode.

TXTPAGEFRAMES A tree of page frames which
specified how the document is
to be laid out.

TXTNEEDSUPDATE T, if the screen contains an
invalid copy of the test.

TXTCHARLOOKSLIST A list of all the CHARLOOKS
in the document so that they
may be kept unique.

TXTPARALOOKSLIST A list of all the FMTSPECs in
the document so that they can
be kept unique.

 Consider the following example of a text object for the text
being edited by TEdit in Section 1.2.

\DIRTY T
PCTB {ARRAYP}#71,175260
TEXTLEN 494
\INSERTPC {PIECE}#54,72642
\INSERTPCNO 4
\INSERTNEXTCH 23
\INSERTLEFT 476
\INSERTLEN 0

TEdit

53

\INSERTSTRING ""
\INSERTFIRSTCH 23
\INSERTPCVALID NIL
\WINDOW ({WINDOW}#74,25000)
MOUSEREGION TEXT
LINES ({LINEDESCRIPTOR}#54,73542)
DS NIL
SEL {SELECTION}#54,114462
SCRATCHSEL {SELECTION}#54,114524
MOVESEL {SELECTION}#54,114566
SHIFTEDSEL {SELECTION}#54,114630
DELETSEL {SELECTION}#54,114672
WRIGHT 530
WTOP 237
WBOTTOM 0
WLEFT 0
TXTFILE "A complex number is a
 generalization of ..."
\XDIRTY T
STREAMHINT {STREAM}#60,46150
EDITFINISHEDFLG NIL
CARET {TEDITCARET}#55,136566
CARETLOOKS {CHARLOOKS}#56,63020
WINDOWTITLE NIL
THISLINE {THISLINE}#56,117720
MENUFLG NIL
FMTSPEC {FMTSPEC}#56,61524
FORMATTEDP NIL
TXTREADONLY NIL
TXTTERMSA NIL
EDITOPACTIVE NIL
DEFAULTCHARLOOKS {CHARLOOKS}#56,63020
TXTRTBL NIL
TXTWTBL NIL
EDITPROPS (CACHE NIL)

TEdit

54

BLUEPENDINGDELETE NIL
TXTHISTORY (Insert LEFT 0 23
 {PIECE}#54,72642 NIL NIL NIL)
SELWINDOW {WINDOW}#74,25000
PROMPTWINDOW {WINDOW}#57,141320
DISPLAYCACHE {LINCACHE}#56,106770
DISPLAYCACHEDS {STREAM}#57,55234
TXTPAGEFRAMES NIL
TXTNEEDSUPDATE NIL
TXTCHARLOOKSLIST ({CHARLOOKS}#56,63020)
TXTPARALOOKSLIST ({FMTSPEC}#56,61524)

Figure 1-14. TEdit Text Object Example

1.3.3 The Selection Object

 The Selection Object is a record structure that maintains
information about the current selection in the text. It is described
in Table 1-6.

Table 1-6. The Selection Object

Field Name Usage

Y0 The Y-coordinate of the topmost line of the
selection

X0 The X-coordinate of the leftmost edge of the
topmost line of the selection.

DX The width of the selection, if it is on one line.
CH# The character number of the first selected

character. The first character in the text is
numbered beginning with one.

XLIM The X-coordinate of the right edge of the last
character in the selection. If DCH is equal to
0, then XLIM is equal to X0.

TEdit

55

CHLIM The character number of the first character
which occurs just after the last selected
character; it must be as large as CH#.

DCH The number of characters selected; it may be
zero to indicate a point selection whence it
points to where characters will be inserted
into the text.

L1 A pointer to the line descriptor for
the line where the first selected
character resides.

LN A pointer to the line descriptor for the line
which contains the last character of the
selection.

YLIM The Y-coordinate of the bottom of the line
that ends the selection.

POINT The location where the caret should appear; it
takes the values LEFT or RIGHT.

SET T, if this selection is real; otherwise, NIL.
\TEXTOBJ A pointer to the text object that describes the

selected text.
SELKIND The type of selection; it takes the values

CHAR, PARA, WORD, LINE.
HOW The texture used to highlight the selection.
HOWHEIGHT The height of the highlight; usually 1.
HASCARET T, if there should be a caret for this selection.
SELOBJ A pointer to another selection object if this

selection is contained within another one.
ONFLG T, if the selection is to be highlighted on the

screen.
SELOBJINFO A storage area for information about other

selections within this selections.

 The selection object for the word "generalization" in the text
has the following structure:

Y0 225
X0 162

TEdit

56

DX 98
CH# 23
XLIM 260
CHLIM 37
DCH 14
L1 ({LINEDESCRIPTOR}#54,73524)
LN ({LINEDESCRIPTOR}#54,73524)
YLIM 225
POINT RIGHT
SET T
\TEXTOBJ {TEXTOBJ}#54,115550
SELKIND WORD
HOW 65535
HOWHEIGHT 1
HASCARET T
SELOBJ NIL
ONFLG NIL
SELOBJINFO NIL

Figure 1-15. TEdit Selection Object Example

1.3.4 The Line Descriptor Object

 A Line Descriptor Object is used to describe a line of text
within the TEdit editing window. Its structure is described in
Table 1-7.

Table 1-7. The Line Descriptor Object

Field Name Usage

YBOT The Y value for the bottom of the line.
YBASE The Y value forthe base line on which the

characters sit.
LEFTMARGIN The left margin of the line (in pixels).
RIGHTMARGIN The right margin of the line (in pixels).

TEdit

57

LXLIM The X value of the right edge of the
rightmost character on the line.

SPACELEFT The space left on the line, ignoring trailing
blanks and <CR>s.

LHEIGHT The total height of the line.
ASCENT The ascent of the line above YBASE.
DESCENT The descent of the line below YBASE.
LTRUEDESCENT The true descent for this line, unadjusted

for the line leading.
LTRUEASCENT The true ascent for this line, unadjusted for

pre-paragraph leading.
CHAR1 The character index of the first character on

the line.
CHARLIM The character index of the last character on

the line.
CHARTOP The character index of the character which

forced the line break.
NEXTLINE A pointer to the next line descriptor.
PREVLINE A pointer to the previous line descriptor.
LMARK The type of special line marker to be

displayed in the left margin for this
paragraph; should be one of SOLID,
GREY, or NIL.

LTEXTOBJ A cached text object from which this line
took its text; it is used in generating
hardcopy when disambiguation is required.

CACHE A cached THISLINE which stores
information for hardcopy processing.

LDOBJ The object which lies behind this line of
text; it is used for updating, etc.

LFMTSPEC The format specification for this line's
paragraph.

DIRTY A flag which is T if this line was changed
since it was last formatted.

CR\END A flag which is T if this line ends with a
CR.

TEdit

58

DELETED A flag which is T if this line has been
completely deleted since it was last
formatted or displayed.

LHASPROT Indicates this line contains protected text.
LHASTABS The relative character index for the final

tab in the line, if any.
1STLN A flag indicating if this is the first line of a

paragraph.
LSTLN A flag indicatng if this is the last line of the

paragraph.

 The values for the line descriptor object containing the
selection "generalization" are described in the following figure.

YBOT 225
YBASE 228
LEFTMARGIN 8
RIGHTMARGIN 522
LXLIM 519
SPACELEFT 10
LHEIGHT 12
ASCENT 9
DESCENT 3
LTRUEDESCENT 3
LTRUEASCENT 9
CHAR1 1
CHARLIM 73
CHARTOP 74
NEXTLINE {LINEDESCRIPTOR}#54,73576
PREVLINE {LINEDESCRIPTOR}#54,73452
LMARK NIL
LTEXTOBJ NIL
CACHE NIL
LDOBJ NIL
LFMTSPEC {FMTSPEC}#56,61524
DIRTY NIL

TEdit

59

CR\END NIL
DELETED NIL
LHASPROT NIL
LHASTABS NIL
1STLN T
LSTLN NIL

Figure 1-16. TEdit Line Descriptor Object Example

1.3.5 The Piece Object

 A piece describes a string, part of a file, or a generalized
object. A PIECE object is used to describe the piece of text at the
current file pointer. It structure is describe in Table 1-8.

Table 1-8. The Piece Object

Field Name Usage

PSTR The string where this piece's text resides;
NIL indicates

PFILE The file which contains this piece's text;
NIL indicates

PFPOS The file pointer to the start of the piece in
the file; 0 if PFILE is NIL.

PLEN The length of the piece, in characters.
NEXTPIECE The next piece of this text object.
PREVPIECE The prior piece of this text object.
PLOOKS The formatting information for this piece.
POBJ The object handle of the object this piece

describes.
PPARALAST A flag indicating this piece contains a

paragraph
PPARALOOKS The paragraph looks for this piece.
PNEW A flag indicating this piece is a new piece of

text.

TEdit

60

PFATP T, if the characters are fat (e.g., 16 bits
each).

An example of a piece object depicted in the following figure.

PSTR ""
PFILE NIL
PFPOS 0
PLEN 0
NEXTPIECE {PIECE}#54,72620
PREVPIECE {PIECE}#54,140066
PLOOKS {CHARLOOKS}#56,63020
POBJ NIL
PPARALAST NIL
PPARALOOKS {FMTSPEC}#56,61524
PNEW T
PFATP NIL

Figure 1-17. TEdit Piece Object Example

1.3.6 The THISLINE Object

 A THISLINE object object describes a particular line within a
piece of text. It takes the following structure.

Table 1-9. Structure of the THISLINE Object

Field Name Usage
DESC A line descriptor for the line this object

describes now.
LEN The length of the line in characters.
CHARS An array of character codes (or objects) in the

line; a character code of 400 indicates a
dummy entry which is used for a character
looks change; the next entry is stored in
LOOKS.

TEdit

61

WIDTHS An array of the character's widths in points
which us

LOOKS An array of any character looks within the line;
LOOKS(0)

 An example of a THISLINE object is depicted in the
following figure.

DESC {LINEDESCRIPTOR}#54,73524
LEN 72
CHARS {ARRAYP}#55,27120
WIDTHS {ARRAYP}#55,27110
LOOKS {ARRAYP}#55,27114

Figure 1-18. TEdit THISLINE Object Example

1.3.7 The Line Cache Object

 The Line Cache object is used to store bitmaps of the
characters in a line of text. It has the following structure.

Table 1-10. Structure of the Line Cache Object

Field Name Usage
LCBITMAP The bitmap that will be used by this

instance of the
LCNEXTCACHE A pointer to the next cache object; used

to simplify

 An example of a Line Cache object is depicted in the
following figure.

LCBITMAP {BITMAP}#61,166446
LCNEXTCACHE {LINECACHE#56,106770

TEdit

62

Figure 1-19. Line Cache Object Example

1.3.8 The Character Looks Object

 Character looks pertain to how individual characters are
formatted relative to the rest of the text. TEdit supports the
following character looks:

• type face
• type style
• type size
• positioning of individual characters

 Character looks for a selection are stored in a CHARLOOKS
object which has the structure depicted in Table 1-19.

Table 1-11. The Character Looks Object

Field Name Usage

CLFONT The font descriptor for the characters.
CLNAME The name of the font (e.g., Gacha).
CLSIZE The font size in points.
CLBOLD A flag indicating if the characters are

displayed in bold
CLULINE A flag indicating if the characters are to be
CLOLINE A flag indicating if the characters are to be
CLSTRIKE A flag indicating if the characters are to be

struck
CLOFFSET An offset which is used to specify

superscripting
CLSMALLCAP A flag indicating small capitals.
CLINVERTED A flag indicating if the characters are to be
CLPROTECTED A flag indicating the characters can't be

selected
CLINVISIBLE A flag indicating that TEdit is to ignore

these

TEdit

63

CLSELHERE T, if TEdit can put a selection after this
character.

CLCANCOPY T, if this text can be selected for copying
even

CLSTYLE The style to be used in marking these
characters.

CLUSERINFO A user data storage area.
CLLEADER A storage area for creating a leader string

for the
CLRULES A list of rules for horizontal positioning.
CLMARK A flag used for marking and sweeping

when the text is put to a file. T indicates
these character looks are really in use in
the text.

1.3.9 The Format Specification Object

 The Format Specification object is used to describe the
paragraph looks of a segment of text in a document. It has the
following structure:

Table 1-12. Structure of the Format Specification

Field Name Usage

1STLEFTMAR The left margin of the first line of the
paragraph.

LEFTMAR The left margin of the rest of the lines
of the

RIGHTMAR The right margin of the paragraph.
LEADBEFORE The leading space above the

paragraph's first line
LEADAFTER The leading space below the

paragraph's bottom line (in points);
however, this is not currently used in
TEdit.

LINELEAD The leading space between lines (in
points); TEdit actually adds this value

TEdit

64

below each line in the paragraph
including the last line.

FMTBASETOBASE The baseline-to-baseline spacing
between lines in this paragraph; this
value overrides the line leading, if
specified.

TABSPEC A list of tab stops for this paragraph;
the CAR specifies the default tab
width.

QUAD How the paragraph is to be formatted;
should be one of LEFT, RIGHT,
CENTERED, or JUSTIFIED.

FMTSTYLE The STYLE that controls the
paragraph's appearance.

FMTCHARSTYLES The character styles that control the
appearance of characters in this
paragraph.

FMTUSERINFO Space for user-defined properties and
information.

FMTSPECIALX A special horizontal location on the
printed page

FMTSPECIALY A special vertical location on the
printed page for

FMTHEADINGKEEP Indicates that this paragraph should
be kept within the top line of the next
paragraph.

FMTPARATYPE The type of paragraph: TEXT,
PAGEHEADING, etc.

FMTPARASUBTYPE The subtype of this paragraph, e.g.,
what kind of page heading it is.

FMTNEWPAGEBEFORE Indicates that a new page should be
started before this paragraph.

FMTNEWPAGEAFTER Indicates that a new page should be
started after this paragraph.

FMTKEEP Information about how this paragraph
is to be kept with other paragraphs.

FMTCOLUMN The number of columns if side-by-
side paragraphs is specified.

TEdit

65

FMTVERTRULES The vertical rules in force.
FMTMARK Records the paragraph looks that are

actually used and, therefore, should
be written to a file when a Put
command is executed.

FMTHARDCOPY T, if this paragraph is to be displayed
in hardcopy format; NIL means this
paragraph is invisible in hardcopy.

1.4 TEdit User Interface Functions

 TEdit provides functions at the user interface which allow you
to execute any of the TEdit commands on a text stream which you
specify. This mode allows you to use TEdit as a programmable
editor within a program.

1.4.1 Opening a Text Stream

 A text stream may be opened on a piece of text using the
function OPENTEXTSTREAM, which takes the form:

 Function: OPENTEXTSTREAM
 # Arguments: 5
 Arguments: 1) TEXT, a text object
 descriptor
 2) WINDOW, a window
 handle
 3) START, the start of the
 text
 4) END, the end of the text
 5) PROPS, a list of TEdit
 properties
 Value: A text stream handle.

TEdit

66

 OPENTEXTSTREAM creates a text stream object describing
TEXT and returns it to the caller.

 If WINDOW is specified, the text will be displayed in the
window. Moreover, any changes made to the text will be
displayed in the window as they occur. Thus, even though editing
of text may occur under the control of some function, you may
still observe the edits as they occur.

 TEXT may be an existing text object (e.g., a TEXTOBJ) or
text stream. PROPS has the same values as specified for TEDIT.
Consider the following example:

<-(SETQ MYTEXTSTREAM
 (OPENTEXTSTREAM MYTEXT AWINDOW))
{STREAM}#64,107554

 If START and END are given, they specified the portion of
text to be edited. If the text object is a file having TEdit
characteristics, these will be reproduced in the window.
Otherwise, the object is treated as a plain-text object. Typically,
START and END are specified for files where you only want to
edit a portion of the file.

1.4.2 Creating a Text Stream

 You may determine the text stream associated with some
TEdit object using the function TEXTSTREAM, which takes the
form:

 Function: TEXTSTREAM
 # Arguments: 1
 Arguments: 1) TEXTOBJ/WINDOW, a text
 object or window handle
 Value: A stream handle.

TEdit

67

 TEXTOBJ/WINDOW can be a text object, a text stream, a
process in which TEdit is running, or a TEdit editing window. If
it is any of these, TEXSTREAM returns the associated text stream
handle. Consider the following example:

<-(SETQ mytextstream (TEXTSTREAM awindow))
{STREAM}#60,47150

 The argument may not be a string.

1.4.2 Making a Selection in a Text Stream

 Given a text stream, you may make a selection in the text
stream using the function TEDIT.SETSEL, which takes the
form:

 Function: TEDIT.SETSEL
 # Arguments: 7
 Arguments: 1) STREAM, a text stream handle
 2) CH#orSEL, a selection handle or
 character index
 3) LEN, the number of characters to
 select
 4) POINT, the side of the selection
 on which the caret is placed
 5) PENDINGDEL?, a flag
 specifiying a delete is pending
 6) LEAVECARETLOOKS, a flag
 specifying how inserted
 characters will look
 Value: A stream handle.

TEdit

68

 TEDIT.SETSEL sets the selection in STREAM. If CH#orSEL
is a selection object, it is used directly. Otherwise, CH#orSEL
represents the first character in the selection. LEN is then
interpreted as the number of characters to select from that first
character. If LEN is zero, then CH#orSEL just specifies an
insertion point where text will be inserted. Consider the following
examples:

<-(TEDIT.SETSEL MYTEXTSTREAM 11 6 'RIGHT T)
{STREAM}#56,127734

Note: You should remember that character pointers start with the
integer 1 while file indexing starts with the number 0.

 POINT specifies which side of the selection that the caret
should be displayed in the window. It must be one of the atoms
LEFT or RIGHT.

 If PENDINGDEL? is non-NIL, the selected text is marked for
pending deletion. That is, it will be deleted and overwritten by the
next type-in (or if the text is moved or copied).

 When you make a selection and then insert new text, the
inserted text has the same characteristics as the text just selected.
You may suppress this feature by setting the flag
LEAVECARETLOOKS to a non-NIL value.

 Selections may be made for different purposes. OPERATION
allows you to specify the purpose of a selection. It may be one of
the following atoms:

 NORMAL
 MOVE
 COPY
 PENDINGDEL
 DELETE

TEdit

69

 INVERTED

 The latter operations just highlights the selected text and
leaves the caret flashing.

1.4.3 Getting the Current Selection

 Once a selection has been made in a text stream, you may
retrieve it using the function TEDIT.GETSEL, which takes the
form:

 Function: TEDIT.GETSEL
 # Arguments: 1
 Arguments: 1) STREAM, a text stream handle
 Value: A selection handle.

 TEDIT.GETSEL returns a copy of the current selection in
the edit window which is described by STREAM. Consider the
following example:

<-(SETQ myselection (TEDIT.GETSEL mytextstream))
{SELECTION}#54,114420

 In Figure 1-13, the word "generalization" is underlined. The
SELECTION object returned by TEDIT.GETSEL corresponds to
that word.

1.4.4 Showing a Selection

 If the current selection is displayed in a window, you can
highlight the selection using the function TEDIT.SHOWSEL,
which takes the form:

 Function: TEDIT.SHOWSEL
 # Arguments: 3

TEdit

70

 Arguments: 1) STREAM, a text stream handle
 2) ONFLG, a flag specifying
 highlighting
 3) SELECTION, a selection handle
 Value: NIL

 If ONFLG is T (or some non-NIL value), the selection
SELECTION in the text stream specified by STREAM will be
highlighted. If NIL, any highlighting is turned off. Consider the
following example:

<-(TEDIT.SHOWSEL mystream T myselection)
NIL

 The result is depicted in Figure 1.14.

Figure 1-20 TEDIT.SHOWSEL Example

 If SELECTION is NIL, then the function is applied to the
current selection of STREAM.

TEdit

71

1.4.5 Inserting into a Text Stream

 A text string may be inserted into a text stream using the
function TEDIT.INSERT, which takes the form:

 Function: TEDIT.INSERT
 # Arguments: 5
 Arguments: 1) STREAM, a text stream handle
 2) TEXT, a text string
 3) CH#orSEL, a selection object
 handle
 4) LOOKS, the font for the text
 5) DONTSCROLL, a flag
 controlling window scrolling
 Value: NIL.

 TEDIT.INSERT inserts the string TEXT into the text stream
STREAM as though you had typed it in. CH#orSEL specifies the
character number where the text is to be inserted as shown in
Table 1-13.

Table 1-13. TEDIT.INSERT options

Field Name Usage

NIL The text is inserted at the current location
of the caret.

a number The text is inserted before the character in
the text stream.

a SELECTION The text is inserted according to the
selection

 Consider the following example whose result is depicted in
Figure 1-21.

<-(TEDIT.INSERT MYTEXTSTREAM "in the normal
definition " 18 NIL)

TEdit

72

NIL

Figure 1-21. TEDIT.INSERT Example

 If the location to insert is NIL, TEdit inserts the string before
the caret. Consider the following example which inserts
"mathematical" before "generalization" because that is the current
location of the caret (see Figure 1-22).

<-(TEDIT.INSERT mystream "mathematical" NIL NIL)
NIL

TEdit

73

Figure 1-22. TEDIT.INSERT with NIL selection

 If LOOKS is specified, it must be a font descriptor which
specifies how the text will be displayed. This allows you to
dynamically change the looks for a small piece of text upon
insertion.

 Normally, TEdit scrolls the edit window so that all changes to
the text are made visible as they occur. You may suppress
scrolling by setting DONTSCROLL to a non-NIL value.

1.4.6 Deleting Text from a Stream

 Text may be deleted from a text stream using the function
TEDIT.DELETE, which takes the form:

TEdit

74

 Function: TEDIT.DELETE
 # Arguments: 3
 Arguments: 1) STREAM, a stream handle
 2) CH#orSEL, a selection handle
 3) LEN, the number of characters to
 delete
 Value: NIL.

 TEDIT.DELETE deletes the specified text selection from the
text stream. CH#orSEL specifies the selection to be deleted. It
may be a number indicating the character at which the selection is
to begin or a text selection object. If it is a number, then LEN must
be present to specify the number of characters to delete. Consider
the following example:

<-(TEDIT.DELETE MYTEXTSTREAM 18 25)
NIL

 This command deleted the text "in the normal definition,
which was inserted by the example for TEDIT.INSERT above.

1.4.7 Finding Text in a Text Stream

 You can search for the next occurrence of a piece of text inside
a text stream using the function TEDIT.FIND, which takes the
form:

 Function: TEDIT.FIND
 # Arguments: 5
 Arguments: 1) STREAM, a stream handle
 2) TEXT, a text string
 3) START#, a character index
 4) END#, a character index
 5) WILDCARDS?, a flag
 Value: The index of the first character of

TEdit

75

 TEXT, if found.

 TEDIT.FIND searches for the next occurrence of TEXT in
STREAM. START# and END# specify the boundaries of the
search area. If START# is NIL, the search will start at the
beginning of the text stream. If END# is NIL, the search continues
to the end of the text stream.

 TEDIT.FIND returns the character index of the first character
of TEXT which matches a sequence of characters in the text
stream. If no match is found, TEDIT.FIND will return NIL.
Consider the following examples:

<-(TEDIT.FIND MYTEXTSTREAM "numeric")
266

<-(TEDIT.FIND MYTEXTSTREAM "FORTRAN" 50 200)
NIL

 In the first example the search was unbounded, so TEdit found
the string "numeric" beginning at location 266 of the text. In the
second example, I specified that TEdit should look only between
character positions 50 and 200. Because the string "FORTRAN"
begins at location 363, it was not found by this search request.

 WILDCARDS?, if non-NIL, specifies the wild card
characters:

 # Matches any single character
 * Matches any sequence of characters
 ' Is used to quote one of the wild cards.

 When wild cards are used, TEdit returns a list consisting of
the first and last characters of the matching sequence in the text
stream. Consider the following example:

TEdit

76

<-(TEDIT.FIND MYTEXTSTREAM "co#plex" NIL NIL '#)
(167 173)

 Here, TEdit returns a list of the beginning and ending
character indices of the string which matched the TEXT
specification.

1.4.8 Generating Hardcopy of Text

 You can obtain a hardcopy of a piece of text using the function
TEDIT.HARDCOPY, which takes the form:

 Function: TEDIT.HARDCOPY
 # Arguments: 6
 Arguments: 1) STREAM, a stream handle
 2) FILE, a file name
 3) DONTSEND, a printer flag
 4) BREAKPAGETITLE, the title
 for the break page
 5) SERVER, a print server name
 6) PRINTOPTIONS, a list of
 options
 Value: NIL.

 TEDIT.HARDCOPY sends the text stream to the printer
specified by SERVER. If SERVER is NIL, then TEdit uses the
printer specified by DEFAULTPRINTINGHOST.

 PRINTOPTIONS allows you to specify printing options
specific to the printer. If FILE is given, the Press file will be left
available for you to use later.
 DONTSEND indicates that the file should not be sent to the
printer, but merely created for later use. Consider the following
examples:

TEdit

77

<-(TEDIT.HARDCOPY mystream)
NIL

 The result is depicted in Figure 1-23.

Figure 1-23. TEDIT.HARDCOPY Example

 When TEdit has finished formatting and transmitting all
pages, it notifies you with a message in the prompt pane.

 If BREAKPAGETITLE is non-NIL, it is used as the title on
the break page printer before the text. Unfortunately, my 4045
laser printer did not support this feature.

1.4.9 Changing the Looks of Selected Characters

 You can change the looks of selected characters using the
function TEDIT.LOOKS, which takes the form:

 Function TEDIT.LOOKS
 # Arguments: 4
 Arguments: 1) STREAM, a stream handle
 2) NEWLOOKS, a list in property
 format of the looks specifications
 3) SELORCH#, a selection handle
 4) LEN, the number of characters

TEdit

78

 Value: NIL.

 TEDIT.LOOKS changes the character looks of the text
selection in the text stream. SELORCH# may be:

 a SELECTION object which specifies the text to be
changed

 an integer must be a FIXP which specifies the first
character to be changed;

 LEN must also be present
 NIL indicates the current selection is to be used

 NEWLOOKS is a list of property-value pairs which describe
how the text selection should look. Any properties not explicitly
mentioned in NEWLOOKS retain their old values. The properties
which may appear in NEWLOOKS are presented in Table 1-14.

Table 1-14. NEWLOOKS Property Values

Property Value Description

FAMILY A name of a font family in which the
selected text will appear.

FACE The face of the new font; the value is like
the one accepted by FONTCREATE.

WEIGHT The new eight of the font - either LIGHT,
MEDIUM, or
BOLD.

SLOPE The new slope of the font - either
REGULAR or ITALIC; it overrides the
SLOPE parameter of the font descriptor.

EXPANSION The new weight for the font - either
CONDENSED, REGULAR, or
EXPANDED.

SIZE The new point size.
UNDERLINE Either ON or OFF, but specifies whether or

not the text is underlined.

TEdit

79

OVERLINE Either ON or OFF, but specifies whether or
not the text will be overscored.

STRIKEOUT Either ON or OFF, but specifies
whetherornot the text will be displayed with
a line struck through it.

SUPERSCRIPT A distance,in points, by which text will be
raised above the normal baseline.

SUBSCRIPT A distance, in points, by which the text will
be lowered below the normal baseline.

PROTECTED Either ON or OFF, but specifies whether the
text can be selected by the mouse or not.

SELECTPOINT Either ON or OFF, but specifies whether or
not the user can make point selection after it,
even if the text is protected.

INVISIBLE Either ON or OFF, but specifies whether or
not the text appears on the screen or in
hardcopy.

INVERTED Either ON or OFF, but indicates whether or
not the text appears in reverse video or not.

Consider the following examples:

<-(TEDIT.LOOKS mystream '(FAMILY HELVETICA
WEIGHT BOLD) 23 27)
NIL

which modifies the looks of the string "mathematical
generalization" as depicted in Figure 1-24..

TEdit

80

Figure 1-24. Example 1 of TEDIT.LOOKS

<-(TEDIT.LOOKS mystream
 '(UNDERLINE ON
 INVERTED ON
 FACE ITALIC)
 56 11)
NIL

which underlines the string "real number" as depicted in Figure
1-25.

TEdit

81

Figure 1-25. Example 2 of TEDIT.LOOKS

1.4.10 Getting the Character Looks of a Selection

 You may obtain a list of the current set of character looks for
a selection using the function TEDIT.GET.LOOKS, which takes
the form:

 Function: TEDIT.GET.LOOKS
 # Arguments: 2
 Arguments: 1) STREAM, a text stream handle
 2) SELORCH#, a selection
 specification
 Value: A list of character looks.

 TEDIT.GET.LOOKS returns a list of character looks (in
property list format) which may subsequently be passed to

TEdit

82

TEDIT.LOOKS. SELORCH# may be a selection object, an
integer, or NIL - whence the current selection is used. Consider
the following examples:

<-(TEDIT.GET.LOOKS mytextstream myselection)
(SUPERSCRIPT 0
 INVISIBLE OFF
 SELECTPOINT OFF
 PROTECTED OFF
 SIZE 10
 FAMILY GACHA
 OVERLINE OFF
 STRIKEOUT OFF
 UNDERLINE OFF
 EXPANSION REGULAR
 SLOPE REGULAR
 WEIGHT MEDIUM
 INVERTED OFF
 USERINFO NIL
 STYLE NIL)

1.4.11 Copying Character Looks

 You may change the character looks of one piece of text based
on those of another piece of text by copying the character look
specifications. To do so, you use the function
TEDIT.COPY.LOOKS, which takes the form:

 Function: TEDIT.COPY.LOOKS
 # Arguments: 3
 Arguments: 1) STREAM, a text stream handle
 2) SOURCE, a selection
 specification
 3) DEST, a selection specification
 Value: NIL.

TEdit

83

 TEDIT.COPY.LOOKS makes the character looks of DEST
appear the same as those of SOURCE. SOURCE and DEST may
be text selection objects or integers. If DEST is a selection object,
it must be in STREAM, whereas SOURCE can be in any text
stream.Consider the following examples where MYSEL1 is "real
number" and MYSEL2 is "mathematical generalization":

<-(SETQ MYSEL1 (TEDIT.GETSEL mystream))
{SELECTION}#55,122734

<-(SETQ MYSEL2 (TEDIT.GETSEL mystream))
{SELECTION}#55,122672

<-(TEDIT.COPY.LOOKS mystream mysel1 mysel2)
NIL

The result is depicted in Figure 1-26.

Figure 1-26. Example of TEDIT.COPY.LOOKS

TEdit

84

1.4.12 Quitting TEdit

 You may exit TEdit by executing the function TEDIT.QUIT,
which takes the following form:

 Function: TEDIT.QUIT
 # Arguments: 1
 Arguments: 1) STREAM, a stream handle
 Value: NIL.

 TEDIT.QUIT terminates the TEdit process (if any) after
writing the contents of the Edit Pane to the appropriate data
structure. It also closes the TEdit Window.

<-(TEDIT.QUIT MYSTREAM)
NIL

1.5 TEdit System Variables

 TEdit operation is controlled by a number of global system
variables, which are described in the following sections.

1.5.1 Pending Deletions

 The global variable TEDIT.EXTEND.PENDING.DELETE
determines whether or not extending a selection makes it a
pending-delete selection. Initially, its value is T.

1.5.2 Default Format Specification

 The global variable TEDIT.DEFAULT.FMTSPEC contains
the default paragraph looks specification. Its initial value is
defined by:

TEdit

85

(create FMTSPEC
 QUAD <- (QUOTE LEFT)
 1STLEFTMAR <- 0
 LEFTMAR <- 0
 RIGHTMAR <- 0
 LEADBEFORE <- 0
 LEADAFTER <- 0
 LINELEAD <- 0
 TABSPEC <- (CONS NIL NIL)
)

1.5.3 The Current Selection

 The global variable TEDIT.SELECTION contains the address
of the current selection object which was made in any TEdit
window. Note that TEdit may operate across several editing
windows concurrently. Consider the example:

<-(TEDIT.SETSEL mystream 23 27)
{SELECTION}#55,154672

<-TEDIT.SELECTION
{SELECTION}#55,154672

1.5.4The Current Shift-Selection

 The global variable TEDIT.SHIFTEDSELECTION contains
the address of the current selection object from any TEdit window
which was created via shift-selection. Suppose I shift-select the
words "polynomial equation".

<-TEDIT.SHIFTEDSELECTION
{SELECTION}#61,12463

TEdit

86

1.5.5 The Current Move Selection

 The global variable TEDIT.MOVESELECTION contains the
address of the current selection object from any TEdit window
which was created via <CTRL>shift-selection.

1.5.6 The Current Read Table

 The global variable TEDIT.READTABLE contains the
address of the current read table that is used by TEdit. Consider
the example:

<-TEDIT.READTABLE
{READTABLEP}#71,42720

1.5.7 The Word Boundary Read Table

 The global variable TEDIT.WORDBOUND.READTABLE
contains the address of the current read table which controls
TEdit's concept of word boundaries. Entries in this table specify
the syntax classes which are treated as white space. Consider the
following example:

<-TEDIT.WORDBOUND.REATABLE
{READTABLEP}#71,42714

1.5.8 TEdit Default Properties

 The global variable TEDIT.DEFAULT.PROPS has as its
value a list, which is the set of default properties for TEdit or
OPENTEXTSTREAM. Its initial value is NIL which indicates
that the current settings in the system font profile are to be used.

TEdit

87

 If you specify optional properties when you invoke TEdit,
these properties are appended to the front of the list so that they
override any defaults.

DEdit

88

2. Display-Oriented Structure Editor

 DEdit is a structure-oriented, display-based editor for editing
Interlisp data structures and programs. It incorporates the
features of the standard TTY-oriented Interlisp editor. However,
it provides a menu- and window-based environment for
accessing the operations provided by the standard Editor.

 A structure editor operates on pieces of objects as structures
in their own right. For example, DEdit can work on a COND
expression embedded within an Interlisp function or on an
element of a fairly complex list structure. The specification of the
piece of structure is made by the user by selecting an expression
using the mouse. Thus, an expression may be an entire function,
an S-expression within a function, or even just an atom.

 DEdit is a modeless editor. You select operations from a
convenient menu which is located at one side of the main editing
window. Arguments are identified by using the mouse to select
the appropriate pieces of structure prior to selecting the
operation.

 DEdit is the standard editor for all editing operations
performed by Interlisp prior to the Lyric Release. This chapter
describes most of the features of DEdit. However, to really
understand its power, it is best to experiment with all of the
operations. You will quickly recognize the analogs to the
standard editor operations.

2.1 Invoking DEdit

 DEdit may be invoked on a number of different Interlisp
objects and data structures. Different function calls are used to

DEdit

89

invoke DEdit as described in the following sections. The basic
function used by all calls to DEdit is DEDITIT, which is
described in Section 2.1.5.

2.1.1 Editing Functions

 To edit a function definition, you invoke DEdit using the
function DF, which takes the form:

 Function: DF
 # Arguments: 1
 Arguments: 1) FN, a function name
 Value: The function name.

 DF is an Nlambda, nospread function. When DF is executed,
it prompts you to place a window on the screen in which the
function definition is displayed. The DEdit menu is displayed to
the right hand side of the window. Figure 2.1 depicts the editing
of a function definition.

<-DF(USABLE.HEIGHT)
USABLE.HEIGHT

DEdit

90

Figure 2-1. Editing a Function Definition

We might define DF as follows:

<-(DEFINEQ (DF (NLAMBDA FN)
 (DEDITIT 'EDITF FN 'DISPLAY)
))
(DF)

2.1.2 Editing Variable Values

 You may edit the value of a variable by invoking DEdit using
the function DV, which takes the form:

 Function: DV
 # Arguments: 1

DEdit

91

 Arguments: 1) VAR, a variable name
 Value: The variable name.

 DV is an Nlambda, nospread function. When DV is
executed, it prompts you to locate a window on the display screen
in which the value of the variable is displayed. The DEdit menu
appears on the right hand side of the window. Figure 2.2 depicts
the editing of a variable value.

<-DV(INITCOMS)
INITCOMS

Figure 2-2. Editing a Variable Value

We might DV as follows:

<-(DEFINEQ (DV (NLAMBDA VAR
 (DEDITIT 'EDITV VAR 'DISPLAY)
)))

DEdit

92

(DV)

2.1.3 Editing a Property List

 You may edit the value of a property of an atom or the
entire property list using the function DP, which takes the form:

 Function: DP
 # Arguments: 2
 Arguments: 1) NAME, the name of an atom
 2) PROP, the name of a property
 Value: The property name.

 DP is an Nlambda, nospread function. When DP is executed,
it prompts you to locate a window on the display screen in which
it displays the value of the specified property. The DEdit menu
appears on the right hand side of the window.

 If PROP has the value NIL, then DEdit displays the entire
property list of NAME for you to edit. Figure 2.3 depicts the
editing of a property list.

<-(DP CAR)
CAR

DEdit

93

Figure 2-3. Editing of a Property List

We might define DP as follows:

<-(DEFINEQ (DP (NLAMBDA ATOM
 (DEDITIT 'EDITPROP (MKLIST ATOM) 'DISPLAY)
)))
(DP)

 Note that we make the value of ATOM a list so that we can
easily handle both cases for DP.

2.1.4 Editing File Commands

 You may edit the File Package commands for a file using the
function DC, which takes the form:

 Function: DC
 # Arguments: 1
 Arguments: 1) FILE, the name of a file
 Value: The name of the variable
 containing the File Package

DEdit

94

 commands.

 DC is an Nlambda, nospread function. When DC is invoked,
you are prompted to locate a window on the display screen in
which the File Package commands (e.g., the value of the variable
<FILE>COMS) is displayed. The DEdit menu appears to the
right hand side of the window. Figure 2.4 depicts the editing of
File Package commands.

<-(DC SHKCOMS)
SHKCOMS

Figure 2-4. Editing File Package Commands

 If FILE is not loaded, DC prints a warning message and
terminates:

<-(DC 'SHK)
(SHK) is not a loaded file.

We might define DC as follows:

<-(DEFINEQ (DC (NLAMBDA FILE
 (* Isolate the file name)
 (SETQ FILE (OR (CAR (LISTP FILE)) FILE))

 (* Make sure the file has been defined, e.g., there are

DEdit

95

 File Package Commands loaded for it.)

 (DEDITIT 'EDITV
 (if (HASDEF FILE 'FILE NIL T)
 then (FILECOMS FILE)
 else (ERROR FILE "is not a loaded file" T))
 'DISPLAY)
)
))
(DC)

2.1.5 The Main DEdit Interface

 Each of the functions described above calls a single interface
to DEdit. This function is DEDITIT, which takes the form:

 Function: DEDITIT
 # Arguments: 3
 Arguments: 1) EDITFN, an editing function
 2) EDITARGS, the expression to
 be edited
 3) EDIT_MODE, the editing mode
 Value: The name of the argument edited.

 DEDITIT wraps a call to the function EDITMODE in a
RESETFORM in order to ensure that editing of the argument
may be restored to its original value if you abort the editing
session. The definition of DEDITIT appears as:

<-(DEFINEQ (DEDITIT (LAMBDA (EDITFN
EDITARGS EDITMODE)
 (RESETFORM (EDITMODE EDIT_MODE)
 (APPLY EDITFN EDITARGS))
)
))

DEdit

96

(DEDITIT)

 EDITMODE is used to decide which environment to edit in.
This is important if you are transporting a program from a non-
windowing environment such as Interlisp-10 to another system
running Interlisp. EDITMODE merely decides whether to call
the standard Interlisp Editor (e.g., the function EDITL or
DEDITL, which is the display-oriented version of the editor.

2.2 DEdit Operation

 DEdit's philosophy is to emphasize the use of interactive
operations to edit Interlisp objects and data structures. When
DEdit is invoked for the first time (in a session), it prompts you
for the location of an edit window which you specify by moving
the mouse to the appropriate position on the display screen. The
edit window is given a fixed size by DEdit when it is initially
created. You may reshape the window to suit your needs at any
time. The edit window handle is cached in a DEDit system
variable for later re-use.

 The object or data structure to be edited is displayed in the
edit window via the prettyprinter (which, incidentally, ignores
the contents of PRETTYPRINTMACROS).

 A standard Interlisp scroll bar is attached to the left edge of
the window. Of course, the scroll bar is only useful if the size of
the window's contents exceeds the available display space.

 A standard DEdit menu is attached to the right edge of the
window. It remains active throughout the editing process.
Figures 2.1 through 2.4 all depict the standard DEdit menu.

DEdit

97

 DEdit operates in an iterative loop consisting of a select-

execute cycle.

 During the editing process, the RIGHT mouse button causes
the standard window menu to be displayed when pressed while
the cursor is located in the title pane of the editing window.

2.2.1 The Selection Phase

 The selection phase selects the object or objects to be
operated upon in the window. To select an item in the window
move the mouse to point directly at the object. Selection is
accomplished through judicious use of the three mouse buttons,
which has the effect described in Table 2-1.

Table 2-1. Mouse Button Effects

Button Effect

LEFT Selects the object that is directly pointed at by
the mouse. Figure 2.5 depicts this action. If the
object pointed to is a list (indicated by pointing
to its opening or closing parenthesis), the entire
list is selected.

MIDDLE Selects the list which contains the item that is
currently pointed at by the mouse. Figure 2.6
depicts this action.

RIGHT Selects the lowest common ancestor of the item
and position that are currently pointed at by the
mouse. Figure 2.7 depicts this action.

DEdit

98

Figure 2-5. Selecting an Item via the LEFT Mouse Button

 The only items that you may point at in the editing pane are
atomic objects such as atoms, numbers, strings, etc. Pointing at
one of a matching pair of parentheses indicates that you want to
select the list which they delimit. White space is neither
selectable nor editable.

 When a selection is made, it is pushed on an internal stack.
DEdit commands are applied to the top of the stack. The stack
can grow arbitrarily deep, so, at most, only the top two selections
are highlighted on the screen because DEdit operators take only
two operands. The most [itrecent]it selection is underlined with
a solid black line while the next most recent is underlined with a
dashed line. The selections may overlap each other, but the
method of underscoring makes both selections visible to you.

DEdit

99

Figure 2-6. Selecting a Containing List

 DEdit may be invoked recursively on components of a
structure. Thus, several DEdit windows may be open on the
display screen at one time. You may make selections in any
active DEdit window.

2.2.1.1 Shift-Selection

 In many cases, you will want to rearrange pieces of programs
or data structures or modify them for inclusion in another part of
the program. To avoid the chore of retyping these pieces of text,
DEdit supports shift-selection. Whenever a selection is made in
a DEdit window while holding the left mouse button down, the
selected item is not pushed on the stack but is placed in the type-
in buffer (see below). Different highlighting is used to indicate
that shift-selection has occurred. Figure 2-7 depicts a shift-
selection to the type-in buffer.

DEdit

100

Figure 2-7.Shift-Selection to the Type-in Buffer

 Selections copied to the type-in buffer may be edited and
then inserted (perhaps, multiple times) into the main editing
pane. Selections from the type-in buffer may also be copied to
other DEdit windows.

2.2.2 The Execute Phase

 The execute phase consists of supplying additional operands
through type-in as well as selection of a DEdit commnad to be
applied to the specified operands.

2.2.2.1 The Type-in Buffer

For many DEdit commands the operands will be chosen through
the selection process outlined above. However, some commands

DEdit

101

require the entry of new text (such as Insert). During the editing
process, a type-in buffer window is attached under the currently
active DEdit window (since many DEdit windows may be open
at once). You may type characters at the keyboard at any time.
They will be entered into the type-in buffer. DEdit reads the
characters that you type via LISPXREAD (see Section 25.5.1, I),
so the entry process must be terminated by a carriage return or a
balancing right parenthesis. During the character entry process
you can use the TTYIN character editing subsystem to edit the
contents of the type-in buffer.

Once you terminate the type-in process, the type-in structure
becomes the top selection on the stack and is available as an
operand for the next command selected. The structure displayed
in the type-in buffer can be selected from, scrolled (if sufficiently
large), or edited just as in the main DEdit window.

2.2.2.2 Type-in Buffer Editing Commands

A few editing commands are available to you directly within the
type-in buffer, as depicted in Table 2-2.

Table 2-2. Editing Commands in Type-In Buffer

Command Effect

CTRL-Z Interprets the rest of the line as a teletype
editor command.

CTRL-S OLD
NEW

Substitutes NEW for OLD in the structure.

CTRL-F X finds the next occurrence of X.

2.2.3 Command Menu

 DEdit commands are displayed in a command menu that is
attached to the right side of the main editing window. You select

DEdit

102

a command by placing the cursor over the menu item and
pressing the LEFT mouse button.

 Some commands have a subcommand menu (such as the
parenthesis command) which provide frequently used variations
of the main command. To access the subcommands, you access
the command in the command menu with the MIDDLE mouse
button which brings up the subcommand menu.

 All commands take their operands from the selection stack.
They may push a result back on the stack. The general process
for executing a DEdit command is:

1. Select the [ittarget]it structure.
2. Select the [itsource]it structure.
3. Select and execute the command.

 The editing process consists of iterating over these three
steps until the Exit command is selected and executed.

 Whenever a command changes the contents of the editing
window, the prettyprinter is invoked to reprint the contents of the
window.

2.2.3.1 Moving the Command Menu

 As you will notice, making selections of program structure
and selecting DEdit commands can involve a lot of mouse
movement. To avoid the necessity of extraneous mouse
movement during a lengthy editing session, DEdit allows you to
bring the command menu to the current location of the cursor. To
do so, press the TAB key which cause the command menu to
snuggle up to the cursor. The command menu window will
remain at the current location of the cursor as long as the TAB
key is held down or the cursor remains within the command

DEdit

103

menu window. When you release the TAB key, the DEdit Menu
returns to its usual position.

2.3 DEdit Commands

 This section describes the DEdit commands available
through the DEdit command menu attached to the editing
window. Subcommands are described along with the main
command with which they are associated.

 For descriptive purposes, assume that the top two selections
on the stack are indicated by the variables TOP and NXT,
respectively.

2.3.1 After

 After inserts a copy of TOP after NXT in the editing window.
If you're target is the entire expression in the edit pane, After will
not allow you to insert the new expression.

2.3.2 Before

 Before inserts a copy of TOP before NXT in the editing
window. If you're target expression is the first expression of the
structure to be edited, Before will not allow you to insert the new
expression. Note that this prevents you from violating the
integrity of functions which are displayed as Lambda
expressions.

2.3.3 Delete

 Delete deletes TOP from the structure being edited. A copy
of TOP remains on the stack and appears in the type-in buffer as
a selected item. You cannot delete the entire structure that is

DEdit

104

displayed in the edit pane. If you were to do so, this might result
in the object being edited receiving the value NIL.

2.3.4 Replace

 Replace replaces NXT in the structure being edited with a
copy of TOP where NXT appears in the structure. A copy of NXT
is substituted into the structure by splicing it in in place of TOP.

2.3.5 Switch

 Switch exchanges TOP and NXT in the structure being
edited. This operation is most frequently used when you have
inverted the ordering of variables although it works equally well
for expressions.

2.3.6 Parentheses Insertion

 () puts parentheses around TOP and NXT. They may be the
same element. This is one of the most useful operations. After
editing a piece of the structure, the parentheses may be
unbalanced. That is, the new expression is not placed quite right.
By judicious insertion (and deletion!) of parentheses, you can
assure a proper definition of the value.

 () has two subcommands associated with inserting individual
left or right parentheses as described in Table 2-3.

Table 2-3. Parenthesis Insertion Subcommands

Subcommand Effect

(in Inserts a left parenthesis before TOP. It has the
same effect as the LI Editor command.

) in Inserts a right parenthesis after TOP. It has the
same effect as the RI Editor command.

DEdit

105

2.3.7 Parenthesis Removal

 () out removes the innermost pair of parentheses surrounding
TOP. This operation is also very useful in ensuring the proper
definition of a structure. For example, if you want to insert a new
list into a structure, you must sometimes remove an additional
pair of parentheses. () has two subcommands associated with
removing individual parentheses as described in Table 2-4.

Table 2-4. Parenthesis Removal Subcommands

Subcommand Effect

(out Removes the immediate left parenthesis before
TOP. It has the same effect as the LO Editor
command.

) out Removes the immediate right parenthesis after
TOP. Its effect is exactly like the RO Editor
command

2.3.8 Undoing the Previous Command

 Undo allows you to undo the last command. It has the same
effect as the UNDO Editor command. Undo has three
subcommands that allow selective undoing as depicted in Table
2-5.

Table 2-5. Undo Subcommands

Subcommand Effect

!Undo Undoes all changes since the start of this
call on DEdit.

?Undo Allows you to selectively undo previous
commands from a menu of all command
issued since the start of this call on DEdit.

DEdit

106

&Undo Allows you to select a command from the
menu of all commands issued since the start
of this call on DEdit, and undo that
command and all commands since.

2.3.9 Searching for Structure

 Find searches for a piece of structure in the edit window
which matches NXT. DEdit looks for the first piece of structure
after TOP matching NXT. This command uses all of the
capabilities of the Editor's search routines.

2.3.10 Swapping Selections

 Swap exchanges TOP and NXT on the stack, but does not
effect the contents of the editing window. Swap has a number of
subcommands as depicted in Table 2-6.

Table 2-6. Swap Subcommands

Subcommand Effect

Center Scrolls the edit window until TOP is visible
in the approximate center of the window.

Clear Discards all selections currently on the
stack.

Copy Copies TOP to the edit buffer and also
duplicates it on the stack.

Pop Pops TOP off the selection stack.

2.3.11 Reprinting a Selection

 Reprint reprints TOP by calling the prettyprinter. After
several editing commands the structure may have been
sufficiently reorganized to be unreadable. Executing Reprint

DEdit

107

forces the prettyprinter to apply its heuristics to the structure to
beautify the structure.

2.3.12 Editing a Structure

 Edit invokes another version of DEdit on the definition of
TOP. If TOP is a list, the CAR of TOP is used. A new DEdit
window is opened with the definition of TOP displayed in the
editing pane. Note tha the DEdit menu is switched to the new edit
window as it becomes the active DEdit window.

 You may return to a previous DEdit window by placing the
cursor in that window and pressing the left mouse button. Notice
that the DEdit menu is automatically transferred to the active
DEdit window.

 DEdit attempts to determine the datatype of the definition of
TOP. It uses TYPESOF to find the type of TOP. If more than one
datatype exists, you will be prompted via a menu to select the
datatype that you wish to edit.

2.3.13 Executing Arbitrary Editor Commands

 EditCom allows you to execute an arbitrary Editor
command on the structure being edited. The value of TOP is the
Editor command to be executed. NXT is the current expression
to which the Editor command will be applied. Thus, you select
the expression to be edited and then type the Editor command in
the Edit buffer.

 EditCom makes several of the commonly used Editor
commands available through a menu. These commands include
?=, GETD, CL, DW, REPACK, CAP, RAISE, and LOWER.

DEdit

108

2.3.14 Inserting a Break Around an Expression

 Break performs a BREAK AROUND (see Section 20.3.4,I)
around the current expression which is the value of TOP.

2.3.15 Evaluating an Expression

 Eval evaluates the expression which is the value of TOP. The
result of the evaluation becomes the new value of TOP and also
appears in the edit buffer. The evaluation occurs within the
context of the structure that is being edited.

2.3.16 Exiting from DEdit

 Exit allows you to exit from the current DEdit session. The
current structure is saved as the value of the object being edited.
Exit has two subcommands available through a menu as depicted
in Table 2-7.

Table 2-7. Exit Subcommands

Subcommand Effect

Ok Exits without an error.
Stop Exits with an error.

2.3.17 DEdit Command List

 The DEdit command list is stored as the value of the variable
\DEDITCOMS. It's initial value is:

((After DEDITAfter)
 (Before DEDITBefore)
 (Delete DEDITDelete)
 (Replace DEDITReplace)

DEdit

109

 (Switch DEDITSwitch)
 ("()" DEDITBI
 ("() in" DEDITBI)
 ("(in" DEDITLI)
 (") in" DEDITRI))
 ("() out" DEDITBO
 ("() out" DEDITBO)
 ("(out" DEDITLO)
 (") out" DEDITRO))
 (Undo DEDITUndo
 (Undo DEDITUndo)
 (!Undo (DEDITUndo T))
 (?Undo (UNDOCHOOSE))
 (&UNDO (UNDOCHOOSE T)))
 (Find DEDITFind)
 (Swap DEDITSwap
 (Center DEDITCenter)
 (Clear (SETQ \DEDITSELECTIONS NIL))
 (Copy DEDITCopy)
 (Pop (POPSELECTION))
 (Swap DEDITSwap))
 (Reprint DEDITReprint)
 (Edit DEDITEdit
 (Dedit% Def (DEDITEdit 'DISPLAY 'Def))
 (Dedit% Form (DEDITEdit 'DISPLAY 'Form))
 (TTYEdit% Def (DEDITEdit 'TELETYPE 'Def))
 (TTYEdit% Form (DEDITEdit 'TELETYPE 'Form))
 (TTYIn% Def (DEDITEdit 'TTYIn 'Def))
 (TTYIn% Form (DEDITEdit 'TTYIn 'Form)))
 (Editcom DEDITEDitCom (?= DEDITARGS)
 (GETD (DEDITEditCom 'GETD))
 (CL (DEDITEditCom 'CL))
 (DW (DEDITEditCom 'DW))
 (REPACK (DEDITEditCom 'REPACK))
 (CAP (DEDITEditCom 'CAP))

DEdit

110

 (LOWER (DEDITEditCom 'LOWER))
 (RAISE (DEDITEditCom 'RAISE)))
 (Break DEDITBreak)
 (Eval DEDITEval)
 (Exit DEDITExit
 (OK DEDITExit)
 (STOP (DEDITExit T)))

)

DEdit

111

Chapter Three

The Typein Editor (TTYIN)

 Interlisp provides a powerful editor for reading input from
the terminal (i.e., the keyboard) and editing it prior to passing it
to the requesting function. This editor is called TTYIN (for TTY
Input - an anachronism). An earlier version was made available
in Interlisp-10 as a Lispuser's Package, but an enhanced TTYIN
has been integrated into the Interlisp system.

 TTYIN supports the following features:
 • alternate mode completion
 • spelling correction
 • a help facility
 • flexible editing

 TTYIN may be used in two ways:

1. You can make it your primary input interface
by setting the value of LISPXREADFN to
TTYIN, so that the LISPX executive will use
it to obtain input.

2. You can call TTYIN directly from within your
program whenever it requires input.

The sections of this chapter discuss how to use TTYIN from both
the user's and the programmer's perspective. In most cases the
user should be made aware that he or she is talking to TTYIN so
that they may take advantage of its capabilities.

DEdit

112

3.1 Using the Mouse with TTYIN

 You may use the mouse when you are interacting with
TTYIN. Its three buttons will be interpreted as shown in Table
3-1.

Table 3-1. TTYIN Mouse Button Usage

Button Effect

LEFT Moves the caret (i.e., the edit marker) to
where the cursor is pointing. The caret moves
while you hold down the left button. At the
point at which you let up on the mouse button,
new text can be entered.

MIDDLE Moves the caret to the next word boundary
closest to the cursor.

RIGHT Deletes text from the cursor to the caret in
either the forward or backward direction.
While holding the RIGHT button, sweep the
mouse over the text to be deleted, which will
be highlighted. When you release the right
button, the text is erased. To cancel the action
of this button, move the mouse outside the
scope of the text block and release the right
button.

3.1.1 Secondary Mouse Operations

 A secondary set of mouse operations is available when you
simultaneously hold down the CTRL and/or SHIFT keys while
pressing a mouse button. The operations are similar, but are
activated in a different manner. While holding down one of the
keys mentioned above, the mouse buttons operate as presented in
Table 3-2.

Table 3-2. TTYIN Secondary Mouse Button Usage

DEdit

113

Button Effect

LEFT Selects a character.
MIDDLE Selects a word.
RIGHT Allows you to extend the selection either left

or right by sweeping the mouse.

 In this mode the caret does not move, but the selected text is
highlighted to indicate the type of operation to be performed.
When you have made a selection and released all mouse buttons,
you may release the key and the operation will be performed. The
operations and highlighting corresponding to the keys are
presented in Table 3-3.

Table 3-3. Selection Functions

Key Operation Highlighting

SHIFT The selected text is
used as typein at the
caret.

broken underline

CTRL The selected text is
deleted.

complemented

CTRL-
SHIFT

The selected text is
deleted and inserted at
the caret as typein.

broken underline and
complemented

 If you want to cancel the selection at any time, press the
LEFT or MIDDLE mouse button and move the cursor outside the
text area.

 You can retrieve the most recent text which you deleted by
pressing the MIDDLE mouse button and typing a blank. The
deleted text will reappear at the current location of the cursor.

3.2 Invoking TTYIN

DEdit

114

 TTYIN is implemented as an Interlisp function which may
be called from your program. It takes the following form:

 Function: TTYIN
 # Arguments: 8
 Arguments: 1) PROMPT, the prompt string
 2) SPLST, a spelling list
 3) HELP, enables a help facility
 4) OPTIONS, an options list
 5) ECHOTOFILE, an echo flag
 6) TABS, a list of tab stops
 7) UNREADBUF, for preloading
 the buffer
 8) RDTBL, a readtable
 Value: An edited version of what is in the
 buffer.

 When TTYIN is called, it prints the value of PROMPT,
which may be an atom or a string, and waits for you to type in
input. When input is completed, TTYIN returns a list consisting
of all of the atoms you have typed in up to the termination
character (as indicated by the read table.

 OPTIONS, if non-NIL, is used to manipulate the text in the
buffer before returning it to the requesting function.

 If the global variable TYPEAHEADFLG is T (or non-NIL),
TTYIN will permit you to type ahead. Otherwise, it will clear the
input buffer before issuing the prompt.

 The following sections discuss the effect of the various
arguments and present examples of how they are used.

3.2.1 Prompt Characters

DEdit

115

 You may specify your own prompt character to indicate
TTYIN input mode. If PROMPT is NIL, then the value of
DEFAULTPROMPT will be used. DEFAULTPROMPT has an
initial value of "** ". Consider the following expression:

<-(TTYIN)
** HELLO<CR>
(HELLO)

 If PROMPT is T, no prompt is given to the user. Consider
the following example:

<-(TTYIN T)
HELLO<CR>
(HELLO)

 If PROMPT is a dotted pair (i.e., (<prompt1> . <prompt2>)),
the CAR is used to prompt for the first line of multiline text,
while the CADR is used to prompt for subsequent lines up to a
termination character. Either <prompt1> or <prompt2> may be
NIL to indicate the absence of a prompt. Consider the following
example:

<-(TTYIN (CONS '1> '+>))
1> ... first line of text here
+> ... next line of text here
 ...
+> and so on<CR>

Note that <CR> is a termination character for TTYIN.

 In many situations, it will probably be easier to rebind
DEFAULTPROMPT when you enter a subsystem than to recall
TTYIN each time you want to specify a new prompt character.

DEdit

116

3.2.2 Spelling Lists

 You may specify a spelling list to be used by TTYIN to check
the correct spelling of user input or perform word completion.
The spelling list consists of a list of dotted pairs of the form
(<synonym> . <root>). The spelling list may be one of the
Interlisp spelling lists or one that you maintain for your
application.

 While typing a word to TTYIN, you may press the ESCAPE
key. When you do so, TTYIN attempts to complete the spelling
of the word by inspecting the spelling list and entering the
remaining characters in the buffer. Consider the following
examples:

<-(TTYIN NIL '(IRAN EGYPT LIBYA HUNGARY))
**L<ESC>IBYA
(LIBYA)

where the letters IBYA following the <ESC> were supplied
from the spelling list by TTYIN.

<-(TTYIN NIL '(IRAN EGYPT LIBYA HUNGARY))
** EGIPT<CR>
=EGYPT
(EGYPT)

 If the spelling list is a system spelling list, words that are
completed by pressing ESCAPE are moved to the front of the list
to indicate high interest. If spelling correction cannot be
performed, TTYIN flashes the screen to alert you to this
situation.

DEdit

117

3.2.3 Help Facility

 If HELP is non-NIL, the value of this argument determines
what happens when you type ? or HELP. If HELP is T, TTYIN
prints the value of SPLST for you in a suitable format. For
example,

<-(TTYIN NIL '(IRAN EGYPT LIBYA HUNGARY) T)
** ?
Please select from among: IRAN, EGYPT, LIBYA,
HUNGARY, or other
**

 If HELP is any other atom or a string containing no spaces,
TTYIN executes the following expression: (DISPLAYHELP
help).

 If HELP is any other Interlisp object, it is printed as is.

 If HELP is NIL, ? and HELP are treated as any other input
you may type to the program. That is, they are afforded no
special treatment.

3.2.3.1 Writing a Help Function

 DISPLAYHELP is a user-written function that processes a
help request. It takes the form:

 Function: DISPLAYHELP
 # Arguments: 1
 Arguments: 1) the value of HELP
 Value: Any value, but it is ignored.

DEdit

118

 Initially, DISPLAYHELP is treated as a dummy function
which merely returns NIL when called. To make it do something
useful, you must provide a function that meets your specific
needs. A generic form of DISPLAYHELP might look like:

(DEFINEQ (DISPLAYHELP (help)
 (COND
 ((NULL help) NIL)
 ((GETD help)
 (* If its a function, evaluate it!)
 (EVAL help))
 ((ATOM help)
 (SELECTQ help
 (<option 1>)
 ...
 (<option N>)))
 (T
 (PRIN1 help))
)
))

 The argument you pass to DISPLAYHELP determines what
action it takes. If HELP is an atom, then DISPLAYHELP selects
the appropriate processing for that atom. This is useful when you
have several options that you can supply.

3.2.4 The Options List

 TTYIN accepts many options which can affect its behavior.
Each of these options is discussed in the following sections along
with an example of how it might be used.

3.2.4.1 No Spelling Correction

DEdit

119

 If you specify the atom NOFIXSPELL in the option list, the
spelling list will be used only for the Help facility and Escape
completion. TTYIN will not call FIXSPELL on unrecognizable
arguments. Usually, you will specify NOFIXSPELL if you plan
to handle spelling correction through other mechanisms such as
the Help facility. Consider the following example:

<-(TTYIN NIL '(IRAN EGYPT LIBYA HUNGARY) NIL
'(NOFIXSPELL))
** EGIPT<CR>
(EGIPT)

Here, EGYPT is misspelled and not corrected!

3.2.4.2 Spelling Correction Confirmation

 If you specify the atom MUSTAPPROVE in the options list,
TTYIN attempts to perform spelling correction via FIXSPELL,
but requests your approval before actually making any
corrections. Consider the following example:

<-(TTYIN NIL '(IRAN EGYPT LIBYA HUNGARY) NIL
'(MUSTAPPROVE))
** EGIPT<CR>
EGIPT = EGYPT? Yes
(EGYPT)

<-(TTYIN NIL '(IRAN EGYPT LIBYA HUNGARY) NIL
'(MUSTAPPROVE))
** HANGRY
(HANGRY)

 Here HANGRY is not corrected because it diverges too far
(according to the spelling correction algorithm) from any of the
candidate words.

DEdit

120

3.2.4.3 Autocompletion

 If you type a <CR> which leaves a word incomplete, TTYIN
will attempt autocompletion using the spelling list if the word
CRCOMPLETE is present in the options list. TTYIN inspects the
spelling list for a unique entry which may be used to complete
the word in the input buffer. Upon completion of the atom, you
may continue to type new words. Consider the following
example:

<-(TTYIN NIL '(IRAN EGYPT LIBYA HUNGARY) NIL
'(CRCOMPLETE))
**EG<CR>YPT
(EGYPT)

where the letters after the <CR> were supplied by TTYIN from
the spelling list.

<-(TTYIN NIL '(IRAN EGYPT IRAQ LIBYA HUNGARY)
NIL '(CRCOMPLETE))
** IR<CR>
(IR)

 If there is no unique entry when CRCOMPLETE is specified,
TTYIN merely returns the characters that you typed.

3.2.4.4 Directory Name Completion

 If SPLST is NIL and the atom DIRECTORY appears in the
options list, TTYIN will interpret an <ESC> as a signal to
attempt to complete a directory name.

DEdit

121

NOTE: This feature was available only in Interlisp-10, but not

Interlisp-D. We will consider making it available in Medley-

Interlisp.

3.2.4.5 Username Completion

 If SPLST is NIL and the atom USER appears in the options
list, TTYIN will interpret an <ESC> as a signal to attempt to
complete a username.

NOTE: This feature was available only in Interlisp-10 running

under the TENEX operating system, but not in Interlisp-D. We

will consider making it available in Medley-Interlisp.

3.2.4.6 Filename Completion

 If SPLST is NIL and the atom FILE appears in the options
list, TTYIN interprets an <ESC> as a signal to attempt filename
completion.

NOTE: This feature is available only in Interlisp-10 running

under the TOPS-20 operating system, but not Interlisp-D. We

will consider making it available under Medley-Interlisp.

3.2.4.7 Fixing Errors

 If the atom FIX appears in the options list, TTYIN examines
the word that you have typed. If the word is not in the spelling
list or does not correct to an entry in the spelling list, TTYIN
interacts with you until an acceptable response is achieved.

<-(TTYIN NIL '(IRAN EQYPT IRAQ LIBYA HUNGARY) T
'(FIX))
** IRAD
IRAD?

DEdit

122

Please select from among IRAN, EGYPT, IRAQ, LIBYA,
HUNGARY
** IRAN
(IRAN)

 A blank line (e.g., returning NIL) is always an acceptable
response. Consider the following example:

<-(TTYIN NIL '(IRAN EQYPT IRAQ LIBYA HUNGARY) T
'(FIX))
** IRAD
IRAD?
Please select from among IRAN, EGYPT, IRAQ, LIBYA,
HUNGARY
** <CR>
NIL

 You may wish to accept responses which are not contained
within the spelling list. If so, then you are advised to use one of
the options NOFIXSPELL, MUSTAPPROVE, or
CRCOMPLETE so that TTYIN does not inadvertently correct
your response into something else.

3.2.4.8 Reading Input as a String

 If you specify the atom STRING in the options list, the input
line is read as a string rather than a list of atoms and treated as
free text. Consider the following example:

<-(TTYIN NIL '(IRAN EGYPT LIBYA HUNGARY) NIL
'(STRING))
** HUNGARY
"HUNGARY"

DEdit

123

3.2.4.9 No Case Conversion

 If you specify the atom NORAISE in the options list, TTYIN
will not convert any lower case letters into upper case. Consider
the following example:

<-(TTYIN NIL NIL T '(NORAISE))
** iran<CR>
(iran)

 But, if the spelling list choices are specified in upper case,
Interlisp returns the upper case value corresponding to to the item
you select. Consider the following example:

<-(TTYIN NIL '(IRAN EGYPT LIBYA HUNGARY) T
'(NORAISE))
** iran<CR> "typed in lower case
** IRAN "Interlisp overwrites in upper case"
(IRAN)

 Note that Interlisp works primarily with upper case
characters. However, comments and other text (such as strings)
are often best entered as lower case text.

3.2.4.10 No Value Computation

 If you specify the atom NOVALUE in the options list,
TTYIN merely returns T if you typed anything in response to its
prompt. It returns NIL if you typed a blank line.

 This option is primarily used with the ECHOTOFILE
argument to avoid duplicating the input because what you typed
has already been copied to the file. This option may also be used
when you have typed a particularly long string, such as when you
use TTYIN for text input, which you do not want duplicated.

DEdit

124

3.2.4.11 Multiline Input

 If you specify the atom REPEAT in the options list, TTYIN
repeatedly prompts you for additional lines until you type a
<CTRL>Z. Once you have terminated the input, TTYIN returns
one list of all the atoms typed (or a single string if the STRING
option is present). Carriage returns will be included in the string
as EOL characters. Consider the following example:

<-(TTYIN NIL NIL NIL '(REPEAT))
** IRAN<CR>
** EGYPT<CR>
** LIBYA<CR>
** <CTRL>-Z
(IRAN EGYPT LIBYA)

3.2.4.12 Reading Textual Input

If you specify the atom TEXT in the options list, TTYIN assumes
that REPEAT, NORAISE, and NOVALUE are all true. You may
then type continuous free text which is terminated by a
<CTRL>Z. Consider the following example:

<-(TTYIN NIL NIL T '(TEXT))
** Now is the time for all good men to come to the aid of their
** country, or so it is said.|_^Z
T

 You may also terminate free text input by typing <CTRL>V.
When TTYIN detects a <CTRL>V, it sets the global variable
CTRLVFLG and returns.

3.2.4.13 Reading Commands

DEdit

125

 If you specify the atom COMMAND in the options list,
TTYIN applies spelling correction, if enabled, only to the first
word in the list. Thus, TTYIN treats the list as if it had the form:

 (<command> . <rest-of-input>)

 The second element is interpreted according to the other
options that may be present. Several cases may result as
depicted in Table 3-4.

Table 3-4. Reading Commands

Command Description

COMMAND
NOVALUE

If NOVALUE is specified as an option,
TTYIN will return (<command>) if no
further input or (<command> . <rest-of-
input>) if <rest-of-input> is non-NIL.
Consider the following
example:

<-(TTYIN NIL '(LIST COPY PRINT) NIL
'(COMMAND NOVALUE))
** (LIST <LISPFILES>AC2)
(%(LIST <LISPFILES>AC2%))

COMMAND
STRING

If STRING is specified as an option,
TTYIN returns <rest-of-input> as a string.
Consider the following example:

<-(TTYIN NIL "(LIST COPY PRINT) T
'(COMMAND STRING))
** LIST X<CR>
(LIST . "X")

COMMAND
REPEAT

If REPEAT is specified as an option,
COMMAND
applies only to the first line typed.

DEdit

126

3.2.4.14 Using the READ Conventions

 Normally, TTYIN will treat parentheses, brackets, and
quotes as individual atoms which are loaded into the buffer as
you type them. You may force these characters to be treated
according to
the current readtable specifications by specifying the option
READ.

 Thus, a balancing ‘)’ or over-balancing ‘]’ will activate the
input as will a <CR> when no parenthesis remains unbalanced.
Control characters may be entered using the <CTRL>-Vx
notation, where x is the control character to be entered.

Note that READ will override all other options except
NORAISE.

3.2.4.15 Using LISPXREAD Conventions

 As with LISPXREAD, TTYIN will permit you to type-
ahead when this option is specified.

3.2.4.16 No Prompting

 If NOPROMPT is specified as an option, TTYIN does not
print the prompt character for the first line, but assumes that the
user program has already done so. However, when echoing the
line to a file, the prompt character will be inserted at the
beginning of the line.

3.2.5 Echoing Input to a File

 If ECHOTOFILE is non-NIL, all user input will be copied to
the specified file. For example, specifying T as the value of
ECHOTOFILE merely duplicates what you type at your

DEdit

127

terminal. If ECHOTOFILE is a list, user input will be copied to
all files in the list.

3.2.5.1 Simple Text Entry

 You may construct a simple free text entry system by
specifying the receiving filename as the value of ECHOTOFILE
and specifying NOVALUE in the options list. Consider the
following example:

<-(OPENFILE 'TEXT 'OUTPUT)
{DSK}<LISPFILES>TEXT.;1

<-(TTYIN NIL NIL NIL NIL 'TEXT)
** Now is the time for all good men to come to the aid of their
** country<CR>
T

<-(CLOSEF 'TEXT)
{DSK}<LISPFILES>TEXT.;1

<-(READFILE 'TEXT)
(Now is the time for all good men to come to the aid of their
country)

3.2.6 Tabbing Specifications

 TABS may be a list of tab stops (e.g., column numbers)
which are used for automatic spacing whenever you type a
<TAB>. When TTYIN detects a <TAB> in the input, it
automatically spaces to the corresponding tab stop in the list.
Thus, three <TAB>s entered sequentially will place the cursor at
the third tab stop.

DEdit

128

3.2.7 Preloading the Input Buffer

 You may preload the TTYIN input buffer with a line of input
which is specified as the value of UNREADBUF. Essentially, the
elements of the list given as the value of UNREADBUF are
unread via TTUNREADBUF into the input buffer. Consider the
following example:

<-(TTYIN NIL NIL NIL NIL NIL "Here is the initial value")
** Here is the initial value

and the cursor waits at the end of the line, (e.g., after "value") for
you to edit the input. Merely typing a <CR> accepts the contents
of the input buffer as the default.

 If you type a <CR> (or a <CTRL>Z when REPEAT is
specified), the contents of the input buffer will be returned
unchanged. Otherwise, you may edit the contents of the buffer
according to any options which may have been specified.

 When READ is specified as an option, the PRIN2 names of
the atoms on the input list will be used.

3.2.8 Read Table Mediation

 If RDTBL is non-NIL and a read table, it will mediate the
effect of READing input typed by the user. Principally, its effect
is to determine how to handle read macros and when to terminate
an input line.

 This feature is available only in Interlisp. CHECK THIS!!

DEdit

129

3.3 TTYIN Editing Commands

 TTYIN was developed under Interlisp-10. With the advent
of the mouse in Interlisp-D, many of the editing commands will
probably not be used because it is easier to position the cursor
using the mouse. However, in the interest of providing a
complete description, this section will describe all commands for
TTYIN.

 TTYIN maintains the notion of the current word as the word
which the cursor currently points to, or if it is a space, the
previous word. Parentheses are treated as spaces.

 The notation [char] means that you should press the META
key and the character simultaneously on your keyboard. The
notation $ indicates the ESCAPE key. Generally, the commands
are constrained to one line of text due to their heritage.

 Most of the commands may be preceded by a number to
indicate how many times the command should be applied. Table
3-5 presents the TTYIN editing commands.

Table 3-5. TTYIN Editing Commands

Command Explanation

[delete] Backs the cursor up one or N characters. If
the cursor is at the beginning of a line (other
than the first line), it deletes the last character
of the previous line.

[bs] Same as above.
[<] Same as above.
[space] Move forward one or N characters (if

preceded by N).
[>] Same as above.
[|_^(up-arrow)] Move up one or N lines (if preceded by N).

DEdit

130

[lf] Move down one or N lines (if preceded by
N).

[(] Move backwards one or N words (if
preceded by N).

[)] Move forwards one or N words (if preceded
by N).

[tab] Move to the end of the line.
[$tab] Move to the end of the buffer.
[}] Moves to the end of the buffer.
[CTRL-L] Moves to the beginning of a line.
[$CTRL-L] Moves to the beginning of the buffer.
[{] Moves to the beginning of the buffer.
[[] Moves to the beginning of the current list,

where the cursor currently resides under an
element of the list or its closing parenthesis.

[]] Moves to the end of the current list, where
the cursor currently resides under an element
of the list or its beginning parenthesis.

[Sx] Skips ahead to the next occurrence of the
character x or rings the bell if none is found

[Bx] Searches backward for the previous
occurrence of the character x.

[Zx] Erases all characters from the current
position of the cursor to the next occurrence
of the character x.

[A] Repeats the last S, B, or Z command
regardless of any intervening input.

[R] Same as A command.
[K] Erases the character at which the cursor

currently points.
[<CR>] Restores the buffer's previous contents when

it is empty; otherwise, operates just like an
[lf] command

[O] Inserts a <CR><LF> sequence after the
cursor but does not move the cursor, which is
the same as performing an "open line"

[T] Transposes the characters before and after the
cursor.

DEdit

131

[G] Grabs the contents of the previous line from
the cursor position onward.

[L] Sets the rest of the line from the cursor
onward to lowercase.

[U] Sets the current word to uppercase.
[$U] Sets the rest of the line from the cursor

onward to uppercase
[C]> Capitalizes the first word of the line.
[CTRL-Q] Deletes the current line.
[CTRL-W] Deletes the current word or the previous

word if the cursor rests on a space
[J] Justifies the line according to the line length

by moving words from one line to the next
and inserting spaces where appropriate.

[$F] Finishes the input line by moving to the end
of the buffer and inserting a <CR>, CTRL-Z,
or] depending on the type of input operation
being performed.

[P] Prettyprints the contents of the buffer in the
buffer and inserts appropriate parentheses if
required

[N] Reprints the current line so you can inspect
the results of editing.

[$N] Reprints the contents of the entire buffer.
[CTRL-Y] Gets a user exec.
[$CTRL-Y] Gets a user exec, but first unreads the

contents of the buffer from the cursor to the
end of the buffer; this allows you to give
something you have typed to Interlisp
immediately

[<-] Adds the current word to the spelling list
USERWORDS; with a zero argument,
removes the word from the spelling list.

[CTRL-R] Refreshes the current line. If you type two
commands in a row, they cause the entire
buffer to be refreshed (on multiline input).

DEdit

132

[?] If typed in the middle of a word, TTYIN
attempts to supply alternative completions, if
any, from the spelling list.

3.4 TTYIN Macros

 TTYIN may also be used as character editor from within
your own functions. When TTYIN is invoked it opens a window
which is attached to the TTYIN buffer. This allows you to
dynamically edit an expression from within your program. From
within your program TTYIN may be invoked by two macros: ED
and EE. Other macros also may load the contents of TTYIN's
buffer as described below.

3.4.1 The ED Macro

 ED is an Interlisp macro which invokes the TTYIN editor. It
loads the current expression into the TTYIN buffer. You may
then apply any TTYIN editing command to the expression.

 You may exit TTYIN by:

1. Typing a balancing right parenthesis at the end of an
expression;

2. Typing <CR> at the end of a balanced expression;
3. Typing <CTRL>-X anywhere in the buffer; or
4. Typing <CTRL>-E to abort.

 The ED macro is defined as follows:

 (ED nil (COMS (TTED)))

3.4.2 The EE Macro

DEdit

133

 EE is an Interlisp macro which prettyprints the expression
into a buffer. However, it uses its own window to provide an
editing area. The EE macro is defined as follows:

 (EE NIL (COMS (TTED (DO.EE EE))))

3.4.3 The BUF macro

 The BUF macro loads the current expression into the TTYIN
buffer. However, it precedes the expression by E. You may use
the contents of the TTYIN buffer as desired. BUF is defined as
follows:

(BUF NIL
 (E (LISPXUNREAD
 (TTYIN '* NIL
 NIL
 'LISPXREAD
 NIL
 NIL
 (LIST 'E (##))
))
 T)
)

 Using BUF with no arguments and terminated by a <CR>
causes the current expression to be evaluated in a manner
similar to that of the Editor macro EVAL.

3.4.4 The TV Macro

 The TV macro is a Programmer's Assistant command which
operates like EDITV. It allows you to edit the value of a variable
by invoking ED on the variable. Consider the following example:

DEdit

134

<-(TV Actors)
** (IRAN EGYPT LIBYA)<CR>
(not changed)
Actors

3.4.5 The FIX Macro

 FIX is a Programmer's Assistant command which loads the
TTYIN buffer with the specified event's input. This allows you
to quickly edit short expressions. Typically, it is used in the
Interlisp Executive window to edit an expression typed in at the
top-level.

3.5 The ?= Handler

 The ?= macro displays the arguments of the function
currently being defined in the typein. TTYIN processes this
macro internally so that you can continue to edit after you have
received the information. When you type ?=, the information is
displayed and then the cursor is placed at the location prior to the
typing of ?=.

3.5.1 User Handling of ?=

 You may provide special treatment for the ?= macro by
assigning a value to the variable TTYIN?=FN. Its value should
be a function of one argument which is called whenever a ?= is
typed in the TTYIN buffer. The argument is the function that ?=
is inside of (e.g., you have already typed the function name and
one or more arguments of the function).

 The function assigned to TTYIN?=FN should return one of
the values listed in 3-6.

DEdit

135

Table 3-6. ?=FN Values

Value Meaning

NIL Indicates that normal ?= processing will be
performed.

T Indicates that nothing should be done. Your
function may perform other actions, but
nothing is made apparent in the TTYIN buffer.

a list The list takes the form (ARGS . <STUFF>). It
treats
<STUFF> as the argument list of the function
and performs normal
?= processing, e.g., <STUFF> is displayed in
the TTYIN buffer.

 If any other value is returned by the function, it is treated as
the value to be displayed and is printed in the TTYIN buffer in
lieu of the information normally printed by ?=.

3.5.2 Reading Intermediate Arguments

 When you type ?=, nothing has been "read" yet by the
Interlisp input functions, so you don't have a normal evaluation
context in which to examine the values of the arguments. The
function assigned to TTYIN?=FN may want to examine the
arguments typed after the function name, but before the ?=. It can
retrieve them by executing TTYIN.READ?=ARGS, which takes
the form:

 Function: TTYIN.READ?=ARGS
 # Arguments: 0
 Arguments: N/A
 Value: A list of the arguments typed
 before the ?=.

DEdit

136

 TTYIN.READ?=ARGS gathers the input between the
function name and the ?= into a list and returns it to the calling
function. Consider the following example where we define
LOOK.AT.ARGS as follows:

<-(DEFINEQ (LOOK.AT.ARGS (FN)
 (TTYINEDIT (TTYIN.READ?=ARGS)
 (CREATEW NIL FN))
))
(LOOK.AT.ARGS)

<-(SETQ TTYIN?=FN (FUNCTION LOOK.AT.ARGS))
(TTYIN?=FN reset)
LOOK.AT.ARGS

<-(SQUARE 5 5 ?=

 At this point, the ?= handler is invoked. It calls the function
LOOK.AT.ARGS. LOOK.AT.ARGS opens a window whose
title is the function name (e.g., SQUARE). In the edit pane of the
window are displayed the arguments. You may then edit the
arguments using the mouse. Typing a <CR> completes editing
and returns to the window in which you typed the function name.
Figure 3.1 depicts the window in which the arguments can be
edited.

DEdit

137

Figure 3-1. Example for LOOK.AT.ARGS

 If the ?= was typed immediately after the function name,
TTYIN.READ?=ARGS returns NIL.

3.5.3 Printing Arguments for ?=

 TTYIN.PRINTARGS is the function used by ?= to print the
function and/or arguments. It takes the following form:

 Function: TTYIN.PRINTARGS
 # Arguments: 4

DEdit

138

 Arguments: 1) FN, the function name
 2) ARGS, an argument list
 3) ACTUALS, a list of actual
 parameters
 4) ARGTYPE, a value of function
 ARGTYPE
 Value: The argument list.

 TTYIN.PRINTARGS displays the arguments in the current
display stream window.

3.5.4 Enabling ?= Handling

 You may enable special ?= handling by setting the value of
TTYIN?=FN. If you set its value to NIL, ?= handling is disabled.
Otherwise, its argument should be a function of one argument,
FN, which is the name of the function in which ?= was typed.
You function should return one of the values presented in Table
3-7.

Table 3-7. ?= Handling Values

Value Meaning

NIL Normal ‘?=’ processing will be performed.
Thus, you may intercept ‘?=’ and determine
if you want to perform any special
processing or not.

T No processing is performed by the system
routines. Rather, the assumption is that the
user function has done all of the necessary
work.

(<arguments> .
<list>)

The ‘?=’ handler treats <list> as the
argument list of the function that you have
typed and performs normal ‘?=’ processing
using it.

<anthing else> The value returned is printed in lieu of the

DEdit

139

normal processing performed by ‘?=’.

3.6 TTYIN Utility Functions

 A number of utility functions are defined that allow you to
use the TTYIN processor as an editor from within a program.

3.6.1 Calling TTYIN as an Editor

 You may call TTYIN as an Editor by executing the function
TTYINEDIT, which takes the form:

 Function: TTYINEDIT
 # Arguments: 3
 Arguments: 1) EXPRS, a list of expressions to
 be edited
 2) WINDOW, a window in which
 to edit
 3) UNPRETTYFLG, a printing
 flag
 Value: The edited value of EXPRS.

 TTYINEDIT is the active function that is invoked by EE.
When called, it switches the keyboard and mouse to WINDOW,
clears it, and prettyprints EXPRS in the window. At this point,
you are executing in TTYIN and may edit the expressions in the
window.

 If WINDOW is NIL, it uses the value of
TTYINEDITWINDOW as the default window in which to edit.
If this window does not yet exist (e.g., the first time this function
is called), you are prompted to create a window which then
becomes the default.

DEdit

140

 If TTYINAUTOCLOSEFLG is non-NIL, the window will
be closed automatically when you exit TTYINEDIT.

 TTYINEDIT does not prettyprint EXPRS if
UNPRETTYFLG is non-NIL.

Consider the following example:

<-(TTYINEDIT (LIST MYTEXT) IOWINDOW)
("A complex number is a generalization of a real number that is
introduced in mathematics ...)

 TTYINEDIT acts like a simple text editor. The value of
MYTEXT is displayed in the window (see Figure 3.2). You may
then edit the value of the expression by positioning the cursor at
some point in the expression and inserting/deleting text as
previously described in Section 3.1. Note that you exit the
window by placing the cursor at the end of the expression and
type a <CR>.

DEdit

141

Figure 3-2. TTYINEDIT Editing a String

 You may also edit function definitions using TTYINEDIT.
Consider this example:

<-(TTYINEDIT (GETD 'HIGHLIGHT) IOWINDOW)
(LAMBDA (MSG ASTREAM) (* edited: "10-Jan-01 17:28")
(DSPSOURCETYPE (QUOTE INVERT)) (PRIN1 MSG
ASTREAM) (DSPSOURCETYPE
(QUOTE INPUT)))

This is depicted in Figure 3.3.

DEdit

142

Figure 3-3. TTYINEDIT Editing a Function

 You may quickly edit a function definition by invoking
TTYINEDIT on its definition.

3.6.2 Setting the TTYIN Window

 The function SET.TTYINEDIT.WINDOW is used to set
the current TTY display stream to the specified window. It takes
the form:

 Function: SET.TTYINEDIT.WINDOW
 # Arguments: 1
 Arguments: 1) WINDOW, a window for
 editing in TTYIN
 Value: The window handle.

DEdit

143

 SET.TTYINEDIT.WINDOW is called under a RESETLST.
It switches the current TTY display stream to the specified
window and clears it. The Y-position is the window is set so that
you may then call TTYIN from within your program. Consider
the following example:

<-(SET.TTYINEDIT.WINDOW IOWINDOW)
{WINDOW}#64,152404

 You may then enter commands or data in the new window
with full access to the TTYIN functions.

3.6.3 Creating a TTYIN Scratch File

 The function TTYIN.SCRATCHFILE returns the scratch
file that is used by TTYIN when prettyprinting its input. It takes
the form:

 Function: TTYIN.SCRATCHFILE
 # Arguments: 0
 Arguments: N/A
 Value: The name of the scratch file.

 If the scratch file does not exist, TTYIN.SCRATCHFILE
creates it in the current directory. It sets the file pointer to 0.

 You should be careful when creating multiple processes that
simultaneously invoke TTYIN because they will all use this file.
Thus, it is a good idea to protect calls to TTYIN via monitor
locks. Consider the following example:

<-(TTYIN.SCRATCHFILE)
{STREAM}#77, 177320

DEdit

144

 This call has opened a stream to the scratch file in the current
directory.

3.7 TTYIN Variables

 TTYIN's behavior is controlled by a number of variables
which may be set by the user.

3.7.1 Automatic Window Closing

 When you invoke TTYIN, it opens a window in which you
can perform editing (Interlisp only). When TTYIN exits, the
window will be closed if the value of the variable
TTYINAUTOCLOSEFLG is non-NIL. Its default value is:

<-TTYINAUTOCLOSEFLG
T

 Typically, you want TTYIN to operate as a "pop-up" editor
which appears when needed, but is otherwise unobtrusive.
Because the window is cached in TTYIN, it is created only once.

 Note that this variable does not affect the action of
TTYINEDIT when you use with a window that is already
opened.

3.7.2 Allowing Typeahead

 If the value of TYPEAHEADFLG is T, TTYIN will allow
you to type ahead several commands after you have typed a
closing parenthesis or bracket or typed <CTRL>-X. Otherwise,
it clears the input buffer of all information except that read by
LISPXREAD.

DEdit

145

3.7.3 Providing Alternative Completions

 If ?ACTIVATEFLG is T, TTYIN attempts to provide
alternative completions from the current spelling list when you
type a ?.

3.7.4 Showing Matching Parentheses

 When you are typing a lengthy expression, it is often hard to
determine where the matching parenthesis lies to the closing
parenthesis that you just typed. If you set SHOWPARENFLG to
T, whenever you type a right parenthesis or bracket, TTYIN
briefly moves the cursor to the matching left parenthesis so that
you can establish your position in the expression. The cursor
remains at that location for about one second or until you type
another character. If you are a fast typer, you probably won't
notice the cursor flicking back and forth across the expression.

3.7.5 Errorset Protection

 If the value of TTYINERRORSETFLG is T, all input not
directed to LISPXREAD will be errorset-protected. This means
that a <CTRL>-E will trap back to the prompt character.
Otherwise, errors propagate upwards in the control stack. Its
value is initially T.

3.7.6 Enabling Escape Completion

 If the value of TTYINCOMPLETEFLG is T, TTYIN will try
to complete a word after you type an escape character (e.g.,
<ESC>) from the USERWORDS spelling list.

 USERWORDS contains words that you have recently
mentioned, including the names of functions that you have

DEdit

146

defined and variables that you have set or evaluated. Under the
theory of temporal locality of reference, if you have mentioned a
word recently, there is a great likelihood that you will mention it
again. Thus, by typing an escape character (e.g., <ESC> which
usually echoes as $), TTYIN can attempt to complete the word
from USERWORDS:

1. If there is no completion, the <ESC> merely
echoes as a $.

2. If there is more than one possible completion, TTYIN
signals you with a "beep" to type at least one more
character.

 If you type an <ESC> while not inside a word (e.g., TTYIN
finds a separator to the left), TTYIN assumes the value of
LASTWORD, i.e., the last thing that you typed that was
recognized by the Programmer's Assistant. You may disable this
feature by setting TTYINCOMPLETEFLG to 0.

 Because this feature is dependent upon the length of the
spelling list(s), as they grow longer, word completion becomes
more time consuming. More importantly, if there are too many
alternatives for the characters that you have typed, you may get
the wrong completion.

 Note that the temporary section of USERWORDS, which is
#USERWORDS in length contains items unless you explicitly
save them in the permanent section. Thus, it is possible for words
to fall off the end of the temporary section and become lost. Then,
there will be no completion possibility for certain words.

3.7.7 Caching the TTYIN Edit Window

 The TTYIN Edit Window is cached in the variable
TTYINEDITWINDOW. Initially, this variable has the value
NIL. If the WINDOW argument to TTYINEDIT is NIL, then the

DEdit

147

value of this variable is used. If it is NIL, the user is prompted to
create a window whose handle is then saved as the value of this
variable.

3.7.8 Default Printing Function

 The default printing function for the variable PRINTFN in
EE's call to TTYINEDIT is stored in this variable.

3.7.9 Handling Comments

 When entering data to TTYIN, you may want the ability to
enter comments along with actual data.
TTYINCOMMENTCHAR is a character code. When the first
character of a new line of input is equivalent to the value of
TTYINCOMMENTCHAR, the line is erased from the screen and
not seen by any input function. Usually, its value is the character
code for ";". If it is NIL, then comments are not handled in any
special way. Initially, its value is NIL.

 If you are using TTYIN for copying textual iput to a file, then
you probably want to disable this feature so that all lines that you
type at the keyboard are sent to the file.

3.8 TTYIN READ Macros

 When reading input in Interlisp, it is useful to be able to
perform translation of special characters to other characters or
sequences of code. Read macros provide alternative
interpretations of characters as they are read. You may also
define read macros for TTYIN that alter the interpretation of
characters as they are read by TTYIN.

DEdit

148

 TTYINREADMACROS is a list of entries, each an
association list, which defines the behavior to be performed when
the specified character is typed. Each entry takes the form:

(<character-code> . <synonym>)

 The entries are interpreted as described in Table 3-8.

Table 3-8. TTYIN Read Macro Codes

Code Interpretation

0Q The character is ignored.
200Q Read another character and turn on its

edit bit (200Q).
400Q Read another character and use its

original meaning (macro quote).

 You may supply more powerful macros which are
recognized when a character is typed on an empty line, i.e., as the
first character after the prompt. These macros are defined by the
form:

(<character-code> <condition> . <response>)

where <condition> is an expression that evaluates true. That is,
the response is executed only if the <condition> is true. If
<response> is a list, it is evaluated; otherwise, it is not. The result
of evaluating (or not) <response> is interpreted as described in
Table 3-9.

Table 3-9. TTYIN Read Macro Response

Response Result

NIL The macro is ignored and the character is
interpreted in a normal manner.

DEdit

149

<integer> A character code which replaces the type
character. If the value is -1, it is treated as 0 but
causes TTYIN to refresh the display of the
expression being entered or edited.

<anything> The TTYIN input is terminated (with a
<CR><LF>) and the value of <response> is
returned. Thus, you can compute a response
which is returned whenever a character is
typed. The original character that you typed is
not echoed.

 Interrupt characters may not be read macros because TTYIN
will never see them; they are handled by the low-level I/O
routines built into the microcode of the 11xx workstations.

 Note that you may have macros which work in a conditional
manner by returning either NIL or a non-NIL value. Because you
can perform extensive computations "behind the scenes" when a
character is typed, you can define macro characters which are
context dependent.

 New editing commands may be added to
TTYINREADMACROS using the following expression:

 (ADDTOVARS TTYINREADMACROS

 (<character-code>
 'CHARMACRO?
 <edit-command>)

)

3.9 Special Responses

 You may specify special processing for a set of commands
which are intercepted during any call to TTYIN. The variable
TTYINRESPONSES defines these special commands. Its value
is a list of elements of the form:

DEdit

150

(<commands> <response> <option>)

where

 <commands> is a single atom or list of atoms to be

recognized as commands.
 <response> is an expression to be evaluated (if a list) or

applied (if an atom) to the
 command and the remainder of the line.
 <option> specifies how the rest of the line is treated.

 The function or expression which is the value of <response>
should return some value which is inserted on the line. If it
returns the atom IGNORE, it is not treated as a special response.

 There are two free variables defined within TTYIN for this
special command processing:

COMMAND The command that you typed.
LINE The remainder of the line.

 You may reference these free variables in the value of
<response>, e.g. either a function call, lambda expression, or
function name which is applied.

 <option> takes one of three values:

1. If it is the atom LINE, the remainder of the line is
passed as a list to the function in <response>.

2. If it is the atom STRING, the remainder of the line is
passed as a string.

3. Otherwise, it should be NIL; the command is only
valid if there is nothing else on the line

DISPLAY-ORIENTED TOOLS

151

4. Display Oriented Tools

 Many of the Interlisp tools and subsystems were enhanced to
operate in the window display system environment. New tools were
developed. These are described in the Lisp Library Reference
Manual. Additional tools, developed and contributed by Interlisp
Users, are described in the Lisp Users Reference manual.
Limitations on space prevent us from describing but a few of the
display-oriented tools. This chapter discusses some of the tools that
are easily and readily used by Interlisp programmers and users.

4.1 The Interactive Display-Oriented Break Package

 As described in Volume I: Interlisp: The Language and Its

Usage, the Break Package was a subsystem oriented to assisting you
in debugging your functions and programs through access to the
runtime environment. It provided the ability to interactive display
the state of the stack, the function code, and the values of data
structures.

 In Medley Interlisp, the utility of the Break Package is greatly
enhanced by providing access to it through the Window Manager.
All of the functions available in the TTY-oriented version of the
Break Package are available here as well. However, multiple
windows allow you to look at many functions, areas of the stack,
and data structures simultaneously. This allows you more flexibility
in examining the execution and operation of individual functions as
well as the program as a whole.

 This section will discuss only those features which differ from
the TTY-oriented version of the Break Package. Refer to Chapter 20
of Volume I for a discussion of the basic commands.

DISPLAY-ORIENTED TOOLS

152

4.1.1 Invoking the Display Oriented Break Package

 Whenever a break occurs in Interlisp, a break window (see
Figure 4-1) is activated near the current tty window of the process
in which the break occurs. The current terminal display stream is
switched to the trace window. At this point you may type in any of
the commands described in Chapter 20 of Volume I. The title of the
break window is changed to reflect the name of the broken function,
the reason for the break, and the depth of the break recursion. If a
break occurs under a previous break, a new break window is created.

Figure 4-1 The Break Window

DISPLAY-ORIENTED TOOLS

153

 The Display-Oriented Break Package enables a trace window
and as many break windows as you find necessary to analyze and
debug your program. The break window has the following structure:

a. A title giving the name of the broken function and
the reason for the break.

b. A display pane in which commands may be typed
and results viewed.

c. A menu of stack frames, which may be scrollable,
leading from the expression which failed to the top
level.

While the cursor is in the break window display pane, the middle
mouse button activates the pop-up menu containing the common
Break Package commands (see Figure 4-2).

Figure 4-2 Display-Oriented Break Package Command Menu

 Figure 4-3 depicts a window which allows you to inspect a stack
frame. In this frame the arguments and their values for the function
DEDITIT are displayed. By selecting the name of the stack frame

DISPLAY-ORIENTED TOOLS

154

with the left mouse button (which highlights it) and pressing the
middle mouse button, a pop-up menu of stack frame commands
appears (see Figure 4-4).

Figure 4-3 Inspecting a Stack Frame

DISPLAY-ORIENTED TOOLS

155

Figure 4-4 Stack Frame Inspection Commands

 If you select one of the argument names, such as EMODE, with
the left mouse button, it is highlighted in reverse video. Pressing the
middle mouse button causes a pop-up menu with the entry SET to
appear (see Figure 4-5). Selecting this item causes a pane to appear
which requests that you type in an expression for evaluation.

DISPLAY-ORIENTED TOOLS

156

Figure 4-5 Setting EMODE

 Placing the cursor in the title bar and pressing the middle
mouse button causes a pop-up menu to appear (see Figure 4-6).
The primary command of interest is ReFetch, which causes the
frame arguments to be redisplayed.

DISPLAY-ORIENTED TOOLS

157

Figure 4-6 Operations on a Stack Frame

4.1.2 Enabling the Display-Oriented Break Package

 In the standard Medley Interlisp sysout, the Display-Oriented
Break Package is enabled. BREAK1 has been modified to use the
window system to display the break environment. You may enable
or disable the Display-Oriented Break Package using the function
WBREAK, which takes the form:

Function: WBREAK
Arguments: 1
Arguments: 1) ONFLG, a flag enabling the
 Display-Oriented Break Package
Value: T or NIL.

DISPLAY-ORIENTED TOOLS

158

 WBREAK enables or disables the Display-Oriented Break
Package. When ONFLG is T, the Display-Oriented Break Package
is enabled. Modifications to BREAK1 and other Break Package
functions are installed. When ONFLG is NIL, these modifications
are removed and the BREAK1 operates like the TTY-oriented
version. Consider the following example:

<-(WBREAK T)
NIL

which enabled the Display-Oriented Break Package.

4.1.3 Display-Oriented Break Package System Variables

 The operation of the Display-Oriented Break Package is
controlled by a number of variables which are described in the
following sections. You should set these variables to suit your
preferences in your initialization file (which is loaded by GREET).

4.1.3.1 Back Trace Menu Size

 The backtrace menu appears (normally) to the right hand side
of the break window. It contains a list of the stack frames preceding
the frame of the function which broke. If the menu size is too small
to contain all of the frames, it is made scrollable in both the vertical
and horizontal directions.

 The back trace menu size is controlled by the system variables
MaxBkMenuWidth and MaxBkMenuHeight whose default
values are 125 and 300 pixels, respectively.

<-MaxBkMenuWidth
125
<-MaxBkMenuHeight

DISPLAY-ORIENTED TOOLS

159

300

 Generally, if you have long function names (over 10 characters),
you will want to increase the maximum width of the Break
Command Menu. Increasing the height merely allows you to scan
more of the calling sequence in a single glance (for deeply nested
calling sequences).

4.1.3.2 Performing an Automatic Traceback

 When a break occurs, Interlisp will perform an automatic
traceback through the stack if AUTOBACKTRACEFLG has a non-
NIL value. Its default value is NIL. The difference is whether the
system performs the BT command or you do when a break occurs.
AUTOBACKTRACEFLG can take one of the non-NIL values
depicted in Table 4-1.

Table 4-1. AUTOBACKTRACEFLG Values

Value Usage

T On an error, the BT menu is automatically
displayed.

BT! On an error, the BT! menu is automatically
displayed.

ALWAYS The BT menu is displayed on breaks caused
both by errors and user-executed invocations of
BREAK or <CTRL>B.

ALWAYS! The BT! is displayed on breaks caused both by
errors and user-executed invocations of BREAK
or <CTRL>-B.

 Generally, you should assign the value ALWAYS to this flag.

4.1.3.3 The Back Trace Font

DISPLAY-ORIENTED TOOLS

160

 The back trace font is the font in which the backtrace menu is
printed.

<-BACKTRACEFONT
{FONTDESCRIPTOR}#70,171504

which corresponds to GACHA 8 MRR.

4.1.3.4 Automatic Closing of the Break Window

 When you exit a break, Interlisp will automatically close the
break window. However, you may preclude this by setting
CLOSEBREAKWINDOWFLG to NIL. Thereafter, you must close
all break windows either via the right button mouse menu or
CLOSEW.

 Initially, this variable has the value T. Generally, you should
leave it set to T. If you have a recursive function that generates
several break windows, it can be a rather tedious process cleaning
them up.

4.1.3.5 Specifying the Break Window Region

 Normally, break windows will be positioned near the window
which has the current TTY display stream. The location of the break
window is determined by the variable BREAKREGIONSPEC
whose LEFT and BOTTOM fields are offset from the left, bottom
corner of the window with the current TTY display stream. The
WIDTH and HEIGHT fields determine the size of the break
window.

 You may specify a fixed break region where you wish the break
window to be placed by setting the variable and saving it on a file.
This is useful when you are partitioning the screen so that critical
windows do not overlap each other.

DISPLAY-ORIENTED TOOLS

161

4.1.3.6 The Trace Window

 The trace window, whose window handle is stored in the
variable TRACEWINDOW, is used for tracing the execution of
functions. It is opened when the first call to TRACE occurs during
the execution of a program. It remains open until you explicitly close
it. During program execution, you can set TRACEWINDOW to any
window handle in order to force trace information to be displayed in
that window.

4.1.3.7 Specifying the Trace Window Region

 RACEREGION is the initial location of the TRACEWINDOW
on the display screen. Its initial value is determined when Medley
Interlisp is initialized. You may specify you own location for the
trace region by assigning a new region specification to this variable.

4.2 The Inspector

 Interlisp provides a display-oriented facility for inspecting the
contents of any data structure that can be defined within Interlisp.
This facility is known as the Inspector. The Inspector provides you
with the capability to change the values of any aspects of the data
structures that you inspect and to "walk" around complex data
structures. Moreover, some data types have multiple aspects that
may be inspected. The Inspector provides a menu of the possibilities
when examining these objects. This permits you to select the
perspective for the data type which best meets your needs.

 When the Inspector is invoked, it displays the field names and
values of any arbitrary data structure in a window. You are prompted
to place the window on the screen. The Inspector adjusts the size of
the window to accommodate the size of the data structure. The

DISPLAY-ORIENTED TOOLS

162

values of fields of a data structure, if sufficiently complex, may also
be inspected.

 The Inspector is integrated with both the Display-Oriented
Break Package and the Interlisp editors.

4.2.1 Invoking the Inspector

There are several ways to invoke the Inspector on an object:

1. Calling INSPECT directly
2. Selecting the Inspect command inside an

Inspector Window
3. Using EDITDEF to edit an object which is not a

list

4.2.1.1 Calling the Inspector

 You may invoke the Inspector on an arbitrary data structure
using the function INSPECT, which takes the form:

Function: INSPECT
Arguments: 3
Arguments: 1) OBJECT, an arbitrary Interlisp
 object
 2) ASTYPE, the record type of the
 object, if any
 3) WHERE, the location of the inspect
 window
Value: The inspect window handle or NIL.

 INSPECT opens an inspect window and displays the contents of
OBJECT in the window. Typically, you will call the Inspector with
just the value of OBJECT.

DISPLAY-ORIENTED TOOLS

163

 The inspection of records and user datatypes is treated
differently by the Inspector. ASTYPE provides you with the ability
to specify how the contents of OBJECT will be displayed. If
ASTYPE has a value, it is assumed to be the record type of the
OBJECT. In this case the properties of the record will be displayed
in the inspect window. However, if ASTYPE is NIL, the data type
of OBJECT will be used to determine its property names in the
inspect window. Consider the following record definition:

<-(INSPECT 'IMAGEOBJ)
{PROCESS}#71,22100

 The record definition of IMAGEOBJ is displayed in Figure 4-7.

Figure 4-7 Inspection of an IMAGEOBJ Record

 You may specify the location of the inspect window by
assigning a value to WHERE. WHERE may be an existing window
(such as the Interlisp Executive window) or a region which will
cause a window to be created in which to display the contents of the
data structure.

DISPLAY-ORIENTED TOOLS

164

 WHERE may also be a position whence the lower left corner of
the inspect window will be located at those coordinates on the
display screen.

4.2.1.2 Inspecting Code

 You may inspect the compiled code of a function using the
function INSPECTCODE, which takes the form:

Function: INSPECTCODE
Arguments: 2
Arguments: 1) FN, the name of a function
 2) WHERE, the location of the
 window
Value: The name of the function.

 INSPECTCODE opens a window and displays the compiled
code of FN using the function PRINTCODE. If the length of the
code exceeds the default size of the window, the window is made
scrollable. Consider the following example:

<-(INSPECTCODE 'APPEND)
APPEND

which creates the window depicted in Figure 4-8.

DISPLAY-ORIENTED TOOLS

165

Figure 4-8 Example of INSPECTCODE

WHERE determines the location of the window. It takes the same
values as INSPECT above. If NIL, the user is prompted to specify
the position and size of the window.

INSPECTCODE invokes TEdit, if loaded, to allow you to edit the
code of the function. TEdit is described in Chapter 1.

WARNING! Do not attempt to edit compiled code unless you

are thoroughly knowledgeable of the consequences of changes to

the code.

 If you attempt to apply INSPECTCODE to a function which is
not compiled, Interlisp prints a warning and ignores the expression:

DISPLAY-ORIENTED TOOLS

166

<-(INSPECTCODE 'LOWERLEFT)
LOWERLEFT not compiled code.

4.2.1.3 Inspecting Code from a Break Window

 If INSPECTCODE is used to inspect a stack frame name in a
Break Window, the location in the code corresponding to the frame's
program counter where it was executing at the time the break
occurred will be highlighted. Figure 4-9 depicts an example.

Figure 4-9 Inspecting in a Break Window

Note: If TEdit is loaded, it will be used to create the code inspector
window.

4.2.1.4 The Inspect Command

 Several of the Interlisp subsystems have the Inspector integrated
with them. In each case, an Inspect command will be found in a
menu associated with those subsystems. When you invoke the
Inspector, it determines which aspects apply to the current object

DISPLAY-ORIENTED TOOLS

167

and creates a menu for you to choose from. The most common
entries are depicted in Table 4-2.

Table 4-2. Common Menu Entries

Entry Usage

FNS Edit the definition of the selected literal atom.
VARS Inspect a variable value.
PROPS Inspect the property list of an atom.
Inspect The object is a list. A window is opened with

two columns displayed: a list of numbers and a
list of items.

TtyEdit Invokes TTYIN on the list.
DisplayEdit Invokes DEdit on a list.
As a PLIST Inspects a list as if it were a property list (e.g.

((PROP1 VAL1) ... (PROPn VALn)).
As an ALIST Inspects the list as an assoication list (e.g.,

(PROP1 VAL1 ... PROPn VALn)).
As a record Displays a submeny of all the records known to

the system from which you choose the one
whose structure you want to overlay on the list.

As a "record type" Inspects a list as a record of the type named in
its CAR.

 If the object that you are inspecting is a bitmap, you will be
given a choice of inspecting the bitmap's contents or the bitmap's
fields.

4.2.1.5 Editing Variables

 If you attempt to edit a non-list data structure via EDITV or
DEdit, the Inspector will be called to display the contents of the data
structure. Consider the following example:

<-(SETQ ABOX (IMAGEOBJCREATE 'BOX BOX))
{IMAGEOBJ}#74,36770

DISPLAY-ORIENTED TOOLS

168

<-(EDITV ABOX)
ABOX

Figure 4-10 depicts the results of editing ABOX.

Figure 4-10 Inspecting via EDITV

4.2.1.6 Inspecting Arrays

You may inspect the contents of an array by calling the function
INSPECT/ARRAY, which takes the form:

Function: INSPECT/ARRAY
Arguments: 2
Arguments: 1) ARRAY, an array handle
 2) BEGINOFFSET, the element at
 which to begin inspection
Value: The window handle.

 INSPECT/ARRAY opens a window and displays the contents
of ARRAY from BEGINOFFSET through BEGINOFFSET +
MAXINSPECTARRAYLEVEL. If BEGINOFFSET is NIL, it
defaults to 0. Consider the following example, which is depicted in
Figure 4-11:

<-(INSPECT/ARRAY \OPCODEARRAY)
{WINDOW}#55,100320

DISPLAY-ORIENTED TOOLS

169

Figure 4-11 INSPECT/ARRAY Example

DISPLAY-ORIENTED TOOLS

170

4.2.2 Inspect Windows

 An inspect window displays two columns of values. the left
column lists the property names of the data structure that you are
inspecting. The right column lists the values of the properties given
in the left column in a one-for-one correspondence. Figure 4-12
depicts a sample inspect window.

Figure 4-12 A Sample Inspect Window

 The left and middle mouse buttons are used to select items in
the inspect window and to invoke a menu of commands,
respectively.

 The left mouse button is used to select items in the inspect
window. You may select an item, either a property name or a value,
by placing the cursor upon the item and clicking the left mouse
button. The item selected will have its shade inverted to indicate that
it has been selected. Only one item at a time may be selected in an
inspect window. Figure 4-13 depicts a window with a property name
selected and the associated menu displayed.

DISPLAY-ORIENTED TOOLS

171

Figure 4-13 Inspector Window with Property Menu

 The commands selected by the middle mouse button depend on
whether the item selected in the inspect window was a property
name or a value. These commands are discussed below. Figure 4-14
depicts an Inspector Window with a property value selected and the
associated menu displayed.

DISPLAY-ORIENTED TOOLS

172

Figure 4-14 Inspector Window with Property Value Menu

4.2.3 Creating and Manipulating Inspector Windows

 The Inspector is built on an abstraction of a window called an
INSPECTW. It is a window with certain properties that display
objects and respond to the selection of parts of objects. You can
create an instance of an INSPECTW using the function
INSPECTW.CREATE, which takes the form:

 Function: INSPECTW.CREATE
 # Arguments: 11
 Arguments: 1) DATUM, an object handle

DISPLAY-ORIENTED TOOLS

173

 or address
 2) PROPERTIES, a list of a
 function
 3) FETCHFN, a fetch
 function
 4) STOREFN, a storing
 function
 5) PROPCOMMANDFN, a
 function for the MIDDLE
 button for property names
 6) VALUECOMMANDFN, a
 function for the MIDDLE
 button for values
 7) TITLECOMMANDFN, a
 function for the title or border
 of the Inspect Window
 8) TITLE, the title of the
 Inspect Window
 9) SELECTIONFN, a
 selection function
 10) WHERE, the location of
 the window
 11) PROPPRINTFN, a
 property value printing
 function
Value: The window handle.

 INSPECTW.CREATE creates an Inspect Window that allows
you to the view the object DATUM. Consider the following simple
example involving a unit from the STRADS program. Let us define
the IRAN unit as follows (example formatted for readability):

<-(SETQ IRAN NIL)
NIL
<-(PUTPROPS IRAN

DISPLAY-ORIENTED TOOLS

174

 Creator CMO
 CreationDate "14-OCT-86"
 Specificity .77
 SubActors (Iranians IranGovernment)
 ElementOf
 (MiddleEastActors
 ThoseThatPlaceThemselvesAboveTheLaw
 RadicalActors
 EconomicallyDepressedNations)
 EconomicStrength
 (CurrentValue Moderate
 ActualValue Moderate
 GoalValue (>= VeryStrong)
)
 MilitaryFanaticism
 (CurrentValue High
 ActualValue High
 GoalValue (>= High)
)
 MilitaryEnemies
 (CurrentValue (Iraq USA)
 ActualValue (Iraq)
 GoalValue (= NoOne)
)
IRAN

<-(INSPECTW.CREATE 'IRAN
 (GETPROPLIST 'IRAN)
 (FUNCTION GETPROP))
{WINDOW}#56,75554

which creates the window depicted in Figure 4-12. Note that you
must specify the first three arguments to INSPECTW.CREATE in
order to generate the window.

DISPLAY-ORIENTED TOOLS

175

4.2.3.1 The Inspect Window Title

 TITLE specifies the title of the Inspect Window. Its value is
interpreted as follows:

1. If its value is NIL, the title of the window
consists of the printed form of the DATUM
followed by the string " Inspector".

2. If its value is the literal atom DON'T, the Inspect
Window will be displayed without a title.

3. If its value is any other literal atom, it is applied
to the datum and the inspect window handle (if
known). If the resultis the atom DON'T, the
Inspect Window will not have a title. Otherwise,
the value returned will be used as the title of the
Inspect Window.

4. Any other value will be used as the title of the
Inspect Window.

 You should consider using only strings as the value of TITLE if
you are following case 4 above.

4.2.3.2 Inspect Window Properties

 PROPERTIES may be interpreted in two ways:

1. If PROPERTIES is a list, it is interpreted as the set of
properties of DATUM to be displayed in the Inspect
Window. This feature allows you to create Inspect
Windows on any data structure in your program, but
restrict the set of features that can be examined. Thus,
you can provide security for system level properties
which you might not want a user to modify.

2. If PROPERTIES is a literal atom, it is applied to
DATUM to generate a list of properties which are
displayed in the Inspect Window. In effect, the value of
PROPERTIES is the name of a function which allows

DISPLAY-ORIENTED TOOLS

176

you to dynamically determine which properties to
display. In addition, you can check whether the user
should be allowed to examine selected properties of the
object.

 Typically, the value of PROPERTIES will be the function
GETPROPLIST which causes the display of all properties
associated with the atom specified as the datum.

 If you specify no arguments for INSPECTW.CREATE, you are
prompted for a region for a window which inspects NIL. This does
not seem to be a particularly useful mechanism.

 The properties for the Inspect Window for a text object
{TEXTOBJ}#55,147416, which is depicted in Figure 4-15, are
depicted in Figure 4-16. In this case the value of PROPERTIES is
the list of record fields to be displayed in the window.

DISPLAY-ORIENTED TOOLS

177

Figure 4-15 Inspect Window for a Text Object

DISPLAY-ORIENTED TOOLS

178

Figure 4-16 Inspect Window Properties

4.2.3.3 The Fetch Function

 The value of FETCHFN is a function that returns the value of
a property of the object. It takes the form:

Function: <FETCHFN>
Arguments: 2
Arguments: 1) OBJECT, an object handle
 2) PROPERTY, a property name
Value: The value of the property, if it
 exists.

 The value is printed in the Inspect Window using PRIN2. For
Lisp atoms, the value of <FETCHFN> will usually be the function
GETPROP which accesses properties and their values on the atom's
property list.

 Consider the inspection of the text object
{TEXTOBJ}#55,147416. You can find the Inspector properties by
inspecting the USERDATA property of the window which appears
as a result of executing (INSPECT (WHICHW)) while the cursor
resides in the TEXTOBJ Inspect Window. The FETCHFN has the
partial definition depicted in Figure 4-17. In this case FETCHFN is

DISPLAY-ORIENTED TOOLS

179

defined in terms of RECORDACCESS because the text object is
defined as a record.

Figure 4-17 FETCHFN Example

4.2.3.4 The Store Function

 The value of STOREFN is a function that changes the value of
a property of the object. It takes the form:

Function: <STOREFN>
Arguments: 3
Arguments: 1) OBJECT, an object handle
 2) PROPERTY, a property name
 3) NEWVALUE, a value expression
Value: The new value.

 STOREFN is invoked by either the default
PROPCOMMANDFN or by INSPECTW.REPLACE to change the
value of a property. You are encouraged to provide undoable
functions as values for this argument.

DISPLAY-ORIENTED TOOLS

180

 For atoms, you should use the function /PUTPROP which is the
undoable form of PUTPROP.

 The STOREFN for the text object {TEXTOBJ}#55,147416 is
depicted in Figure 4-18. It is defined using RECORDACCESS
because the text object is defined as a record.

Figure 4-18. STOREFN Example

4.2.3.5 The Property Command Function

 The value of PROPCOMMANDFN is a function which is
executed when you press the MIDDLE mouse button while the
cursor is pointing at a selected property name in the Inspect
Window. It takes the following form:

 Function: <PROPCOMMANDFN>
 # Arguments: 3
 Arguments: 1) PROPERTY, a property name
 2) OBJECT, an object handle
 3) INSPECTW, a window handle

DISPLAY-ORIENTED TOOLS

181

 Value: The property name.

 The value of PROPCOMMANDFN should present the user
with a menu of the actions permissible for a property. If you do not
specify a value for PROPCOMMANDFN, a default function,
DEFAULT.INSPECTW.PROPCOMMANDFN, will be assigned
as its value when the Inspect Window is created. This function
presents a menu of one item, SET.

 If you select SET, it reads a value that you type in, evaluates it,
and assigns it as the value of the property. A sample entry for
\DIRTY appears in the SELECTABLEITEMS field. The
PROPCOMMANDFN for the \DIRTY property of the text object
{TEXTOBJ}#55,147416 appears as:

((2 594 42 12)
 DEFAULT.INSPECTW.PROPCOMMANDFN \DIRTY
PROPERTY)

 The first element of the list is the region specification in the
Inspect Window for the property.

 If you wish to disable the PROPCOMMANDFN, you may
assign a string as its value which will be displayed in the Prompt
Window when a property is selected.

4.2.3.6 The Value Command Function

 The value of VALUECOMMANDFN is a function that is
executed when you press the MIDDLE mouse button while the
cursor is pointing to a selected property value in the Inspect
Window. It takes the form:

 Function: <VALUECOMMANDFN>
 # Arguments: 4

DISPLAY-ORIENTED TOOLS

182

 Arguments: 1) VALUE, the selected value
 2) PROPERTY, the property name
 3) OBJECT, an object handle
 4) INSPECTW, a window handle
Value: The new value.

 In executing the function, the Inspector calls the value of
FETCHFN to retrieve the value of the property of the object. If the
value of VALUECOMMANDFN is NIL, a default function,
DEFAULT.INSPECT.VALUECOMMANDFN, is assigned as its
value when the Inspect Window is created. It presents a menu of the
possible ways to inspect the value (see Section 4.2.4, II). When one
of these methods is selected, it creates a new Inspect Window to
perform it.

4.2.3.7 The Title Command Function

 The value of TITLECOMMANDFN is a function which is
executed when you press the MIDDLE mouse button while the
cursor is situated in the title or border area of the Inspect Window.
It takes the form:

 Function: <TITLECOMMANDFN>
 # Arguments: 2
 Arguments: 1) INSPECTW, a window handle
 2) OBJECT, an object handle
 Value: The window handle.

 The primary use of TITLECOMMANDFN is to allow you to
select functions which might be applied to the entire object rather
than a single property. If the value of TITLECOMMANDFN is NIL,
a default function,
DEFAULT.INSPECTW.TITLECOMMANDFN, is assigned as
its value when the Inspect Window is created. This function presents

DISPLAY-ORIENTED TOOLS

183

a menu of standard operations as described in Section 4.2.4 of
Medley-Interlisp:Interactive Programming Environment.

4.2.3.8 The Selection Function

 The value of SELECTIONFN is a function which is executed
when you release the LEFT mouse button while the cursor is
pointing at one of the items in the Inspect Window. It takes the form:

 Function: <SELECTIONFN>
 # Arguments: 3
 Arguments: 1) PROPERTY, a property name
 2) VALUEFLG, a flag for the item
 type
 3) INSPECTW, a window handle
 Value: The property

 This function allows you to take action with respect to one of
the items displayed in the Inspect Window. When it is called, the
selected item is highlighted to indicate that it is "selected".

4.2.3.9 The Property Printing Function

 The value of PROPPRINTFN is a function which is executed
to determine what the print in the property place for the given
property. It takes the form:

 Function: <PROPPRINTFN>
 # Arguments: 2
 Arguments: 1) PROPERTY, a property name
 2) DATUM, the datum handle
 Value: The entry to be printed

 This function allows you to substitute some other string or atom
for the specified property name when the property is to be displayed

DISPLAY-ORIENTED TOOLS

184

in the Inspect Window. If its value is NIL, no property name will be
printed.

4.2.3.10 Redisplaying an Inspect Window

 You may redisplay the object that is viewed by an Inspect
Window using the function INSPECTW.REDISPLAY, which
takes the form:

 Function: INSPECTW.REDISPLAY
 # Arguments: 2
 Arguments: 1) INSPECTW, a window handle
 2) PROPS, a list of properties
 Value: The window handle.

 INSPECTW.REDISPLAY updates the Inspect Window which
is displaying one or more objects. Inspect windows do not
automatically update their display when the object they are showing
is updated. Thus, if you are using Inspect Windows to monitor the
changing values of objects within a system (such as for debugging
or process monitoring), every time that a property is updated, you
must force a redisplay of the associated Inspect Window.

 PROPS is generally interpreted as a list of properties to be
updated within an Inspect Window. If PROPS is NIL, all properties
will be updated when this function is executed.

 This function is called by the ReFetch command in the title
command menu of an Inspect Window.

4.2.3.11 Replacing Property Values

 The function INSPECTW.REPLACE is provided as a
functional interface for implementing your PROPCOMMANDFN.
It takes the form:

DISPLAY-ORIENTED TOOLS

185

 Function: INSPECTW.REPLACE
 # Arguments: 3
 Arguments: 1) INSPECTW, a window handle
 2) PROPERTY, a property name
 3) NEWVALUE, an expression
 Value: The region of the value of the

property.

 INSPECTW.REPLACE invokes the STOREFN to change the
value of the property and calls INSPECTW.REDISPLAY to update
the display in the Inspect Window. Consider the following example
(depicted in Figure 4-19):

<-(INSPECTW.REPLACE IW 'WTOP 20)
(129 342 14 12)

DISPLAY-ORIENTED TOOLS

186

Figure 4-19 INSPECTW.REPLACE Example

4.2.3.12 Selecting an Item in an Inspect Window

 When you point the cursor at an item in an Inspect Window and
press the LEFT mouse button, the item is selected. Pressing the
LEFT mouse button invokes the function
INSPECTW.SELECTITEM, which takes the form:

 Function: INSPECTW.SELECTITEM
 # Arguments: 3
 Arguments: 1) INSPECTW, a window handle
 2) PROPERTY, a property name
 3) VALUEFLG, a flag for the item

DISPLAY-ORIENTED TOOLS

187

 type
 Value: NIL.

 When an item is selected, INSPECTW.SELECTITEM inverts
the item's name in the Inspect Window and assigns it as the value of
the window property CURRENTITEM. If CURRENTITEM was
non-NIL, it is deselected.

 VALUEFLG determines whether the item selected was the
property name (value is NIL) or the property value (value is T).

 If PROPERTY is NIL, no item will be selected. This feature
allows you to select all items in the Inspect Window.

 Consider the following example (see Figure 4-20):

<-(INSPECTW.SELECTITEM IW 'WLEFT)
NIL

<-(WINDOWPROP IW 'CURRENTITEM)
((2 318 35 12) DEFAULT.INSPECTW.PROPCOMMANDFN
WLEFT PROPERTY)

DISPLAY-ORIENTED TOOLS

188

Figure 4-20 INSPECTW.SELECTITEM Example

4.2.3.11 Obtaining the INSPECTW Properties

 You can retrieve the properties that are displayed in an Inspect
Window using the function INSPECTW.PROPERTIES, which
takes the form:

 Function: INSPECTW.PROPERTIES
 # Arguments: 1
 Arguments: 1) INSPECTW, the window handle

DISPLAY-ORIENTED TOOLS

189

 Value: A list of the properties.

When you execute this function, you are prompted by a menu to
select the method of display: DisplayEdit, Inspect, As a Record, or
As a PLIST, I selected DisplayEdit for the following example:

<-IW
{WINDOW}#55,120300

<-(INSPECTW.PROPERTIES IW)
(\DIRTY
 PCTB
 TEXTLEN
 \INSERTPC
 |INSERTPCNO
 \INSERTNEXTCH
 \INSERTLEFT
 \INSERTLEN
 \INSERTSTRING
 \INSERTFIRSTCH
 \INSERTPCVALID
 \WINDOW
 MOUSEREGION
 LINES
 DS
 SEL
 SCRATCHSEL
 MOVESEL
 SHIFTEDSEL
 DELETESEL ...
 and so forth
)

4.2.3.12 Fetching the Value of a Property

DISPLAY-ORIENTED TOOLS

190

 You may fetch the value of a property displayed in an Inspect
Window using the function INSPECTW.FETCH, which takes the
form:

 Function: INSPECTW.FETCH
 # Arguments: 2
 Arguments: 1) INSPECTW, the window handle
 2) PROPERTY, the name of a
 property
 Value: The property's value.

 PROPERTY must be one of the properties in the list of
properties specified when you created the Inspect Window.
Consider the following example:

<-(INSPECTW.FETCH IW 'CARETLOOKS)
{CHARLOOKS}#61,6240

4.2.4 Inspect Commands

 The middle mouse button invokes a pop-up menu of commands
when an item is selected within an inspect window. The type of
menu depends on whether the item selected was a property name or
a value.

4.2.4.1 Property Name Commands

 When you select a property name in an Inspect Window, it is
highlighted by reverse video. Pressing the middle mouse button
causes a pop-up menu to appear with commands that can operate on
the property. The standard menu includes a single command SET
which allows you to change the property's value. Figure 4-19 depicts
the prompt pane that appears. Evaluation is initiated by pressing a
carriage return or completing an S-expression.

DISPLAY-ORIENTED TOOLS

191

4.2.4.2 Value Commands

 When you select a value, it is highlighted by reverse video.
Pressing the middle mouse button causes a pop-up menu to appear
with commands that can operate on the value. The commands that
appear depend on the type of value. For example, the value for
DEFAULTCHARLOOKS is a CHARLOOKS object. The
command that appears for it is INSPECT, whereas the commands
that appear for the value of EDITPROPS are DisplayEdit, TtyEdit,
As a Record, and As a PLIST.

4.2.4.3 Inspect Window Commands

 If you place the cursor on the title bar of the Inspector Window
and press the middle mouse button, a menu of commands that
applies to the Inspector Window itself will pop-up. These
commands are presented in Table 4-3.

Table 4-3. Inspect Window Middle Mouse Button Commands

Command Description

ReFetch Updates the values of the object which is
displayed in the Inspector Window if it has
changed since the last time those values were
fetched

IT<-datum Sets the variable IT to the object being
inspected in the Inspector Window.

IT<-selection Sets the variable IT to the property name or
value which is currently selected within the
Inspector Window.

4.2.5 Interacting with Break Windows

 The Break Package in the Interlisp environment is integrated
with the Inspector. Thus, when you are examining a back trace of
the stack in a Break Window, you may inspect the the contents of a

DISPLAY-ORIENTED TOOLS

192

particular frame in the stack. To do so, you select the frame name in
the Break Window stack frame menu and press the left mouse
button.

 When you examine a frame, which is displayed in a separate
window, you may access the named objects and their values. Of
course, some objects will not have inspectable features and you will
be informed by a message in the Prompt Window. You may change
the values of objects bound in a frame by:
 1. Selecting the object name in the Inspect Window.
 2. Pressing the MIDDLE button to pop-up a menu of
 commands.
 3. Selecting SET from the menu.

 Caution should be exercised when changing the values of
variables on the stack. Although Interlisp allows you to inspect the
compiled versions of system functions, you should not attempt to
change the values of objects bound within system function frames.
Setting system variables to unusual values can crash the system.

4.2.6 Inspector Variables

 The behavior of the Inspector is controlled by a number of
system variables. Generally, these control the amount of information
to be displayed when you invoke the Inspector.

4.2.6.1 Handling Long Lists

 It is possible, perhaps even normal, to create very long lists in
Interlisp programs. When inspecting the value of a list, you may not
know how long it is. As mentioned above, the Inspector sizes the
window in which it displays values of objects and makes them
scrollable if the length of the value of the object exceeds the window
size.

DISPLAY-ORIENTED TOOLS

193

 Waiting for the Inspector to display the entire value of a list can
be tedious, especially when it has to set up a scrolling option. Often,
you can determine from the first N elements of a list what the
problem.

 You can set the number of elements of a list that the Inspector
will display by setting the system variable
MAXINSPECTCDRLEVEL. Initially, its value is 50.

 When a long list is inspected, the last item to be displayed is set
to contain the unprinted elements. You may inspect the tail to see
the remaining elements (or at least the next elements limited by
MAXINSPECTCDRLEVEL).

4.2.6.2 Inspecting Arrays

 You will often face a similar problem when inspecting arrays.
You can set the number of elements of an array that the Inspector
will display by setting the value of MAXINSPECTARRAYLEVEL.
Initially, its value is 300. You may inspect the remaining elements
by calling the function INSPECT/ARRAY.

4.2.6.3 Setting PRINTLEVEL

 When printing values in an Inspect Window, the Inspector uses
the standard system printing functions. The behavior of these
printing functions is mediated by the value of PRINTLEVEL. The
Inspector temporarily sets the value of PRINTLEVEL to the value
of INSPECTPRINTLEVEL while printing values in an Inspect
Window. Its value is initially (2 . 5).

4.2.6.4 Inspecting Record Fields

 When you inspect the values of objects which have record
definitions, the Inspector uses the value of

DISPLAY-ORIENTED TOOLS

194

INSPECTALLFIELDSFLG to determine which fields of the
definition to display. Initially, its value is T. Thus, the Inspector will
display both computed fields (using ACCESSFNS) and regular
fields of the record definition.

4.2.7 Inspector Macros

 The Inspector "knows" about the standard data types and objects
that are defined within Interlisp. When you create new data objects,
you can tell the Inspector about them by defining Inspector Macros.
Inspector Macros are defined as entries on the list
INSPECTMACROS. Each entry takes the form:

 (<OBJECTTYPE> . <INSPECTINFO>)

where:
 OBJECTTYPE Specifies the types of objects that may
 be inspected with this macro.
 INSPECTINFO Specifies the definition of the macro.

 The initial value of INSPECTMACROS is:

((READTABLEP RDTBL\NONOTHERCODES
 GETSYNTAXPROP
 SETSYNTAXPROP)
 (TERMTABLEP (CHARDELETE
 WORDELETE
 LINEDELTE
 RETYPE
 CTRLV
 EOL
 RAISE
 ECHOMODE
 LINEDELETESTR
 1STCHDEL

DISPLAY-ORIENTED TOOLS

195

 NTHCHDEL
 POSTCHDEL
 EMPTYCHDEL
 ECHODELS?
 CONTROL
 0 1 2 3 4 5 6 7 8 9 10 11 12 13
 14 15 16 17 18 19 20 21 22 23
 24 25 26 27 28 29 30 31)
 GETTTBLPROP
 SETTBLPROP
))

4.2.7.1 Macros for Literal Atoms

 If OBJECTTYPE is a literal atom (i.e., satisfies LITATOM), the
value of INSPECTINFO will be used to inspect items whose type
name is OBJECTTYPE.

4.2.7.2 Macros for Lists

 If OBJECTTYPE is a list of the form:

 (<function> <datum-predicate>)

 DATUM-PREDICATE will be applied to the item. If it returns
a non-NIL value, then the INSPECTINFO value will be used to
inspect the item. INSPECTINFO can take one of two forms:

1. If INSPECTINFO is a literal atom (i.e., satisfies
LITATOM), it should be a function of three
arguments: the item being inspected, the value
of OBJECTTYPE, and the value of the WHERE
argument of INSPECT. The function will do the
inspecting.

2. If INSPECTINFO is not a literal atom, it should
be a list of the form:

DISPLAY-ORIENTED TOOLS

196

 (<properties>
 <fetchfn>
 <storefn>
 <propcommandfn>
 <valuecommandfn>
 <titlecommandfn>
 <title>
 <selectionfn>
 <where>
 <propprintfn>)

which are just the arguments that would be passed to
INSPECTW.CREATE. The WHERE argument is evaluated, but the
others are not.

4.3 The Grapher Utility

 Although Grapher is a Lisp Library Package, its usefulness is so
ubiquitous that I describe it with the other major interactive display
tools.

 Grapher is a package of functions that allows you to layout,
display, and edit graphs configured as networks of nodes and links.
Each node in a graph has a label, but the links do not. Links are
drawn as straight lines between nodes by default. You may adjust
the appearance of individual links. Node labels can be text, bitmaps,
or image objects. You can attach functions and menus to individual
nodes such that the functions are triggered or the menus are
displayed when a node is selected with the mouse.

 The following data structure, which is assigned to the variable
PARSE, will be used to demonstrate the functions associated with
Grapher:

DISPLAY-ORIENTED TOOLS

197

(SENTENCE
 ((TENSE PAST)
 (SENTENCE-TYPE DECLARATIVE)
 (NUMPERS (1 3)))
 (SUBJECT
 ((NUMPERS (1 3)))
 (NOUN-PHRASE-HEAD
 ((NUMPERS (1 3)))
 HE))
 (PREDICATE
 ((COMPLEMENT NIL)
 (TENSE PAST)
 (VNUMPERS (1 3))
 (TRANSITIVE T))
 GAVE
 (OBJECT
 ((NUMPERS (1 3)))
 (NOUN-PHRASE-HEAD
 ((NUMPERS (1 3)))
 THE BOOK))
)

which is a syntactic parse of the sentence "He gave the book".

4.3.1 The Structure of a Graph

 A graph is represented by a GRAPH record which has the
described in Table 4-4.

Table 4-4. Graph Record Fields

Field Usage

GRAPHNODES A list of graph nodes which have the
structure described below.

DISPLAY-ORIENTED TOOLS

198

DIRECTEDFLG Controls how links are drawn
between nodes.

SIDESFLG Controls the drawing of links
between the sides of nodes rather
than their top or bottom edges.

GRAPH.MOVENODEFN If non-NIL, a function that is called
after you have moved a node in the
graph.

GRAPH.ADDNODEFN If non-NIL, a function that is called
to add a node to the graph.

GRAPH.DELETENODEFN If non-NIL, a function that is called
when a node is to be deleted from the
graph.

GRAPH.ADDLINKFN If non-NIL, a function that is called
when a link is added between two
nodes.

GRAPH.DELETELINKFN If non-NIL, a function that is called
when you are about to delete a link
between two nodes.

GRAPH.FONTCHANGEFN If non-NIL, a function that allows
you to change the size of node labels.

4.3.1.1 DIRECTEDFLG

 If DIRECTEDFLG is NIL, Grapher will draw each link so that
it does not cross the node labels of the nodes that it runs between.
The objective is not to obscure the node labels by "running" over
them with the link lines. However, this may cause ambiguities in the
visual interpretation of the graph which are settled by SIDESFLG.

 If DIRECTFLG is non-NIL, the edges are always directed to the
left edge of the To node. But, this may cause links to cross the labels
of the nodes that they run between. SIDESFLG is used to adjust the
position of the link.

4.3.1.2 SIDESFLG

DISPLAY-ORIENTED TOOLS

199

 SIDESFLG is used to determine which side of a node the links
will be drawn to or from. When DIRECTEDFLG is NIL,
SIDESFLG is interpreted as presented in Table 4-5.

Table 4-5. SIDESFLG Interpretation

Value Usage

NIL The links will be drawn between the top and bottom
edges of the nodes.

non-NIL The links are drawn between the sides of
the nodes.

 When DIRECTEDFLG is non-NIL, SIDESFLG is interpreted
as as presented in Table 4-6.

Table 4-6. SIDESFLG Interpretation

Value Usage

NIL The From end of the link is drawn to the bottom
edge of the From node and the To end of the link is
drawn to the top edge of the To node.

non-NIL The From end of the link is drawn to the
right edge of the From node and the To
end of the link is drawn to the left edge of
the To node.

4.3.1.3 GRAPH.MOVENODEFN

 The value of the GRAPH.MOVENODEFN field is a function
which takes the form:

 Function: <graph.movenodefn>
 # Arguments: 5
 Arguments: 1) NODE, a node identifier
 2) NEWPOSITION, a new
 position for the node

DISPLAY-ORIENTED TOOLS

200

 3) GRAPH, a graph
 structure
 4) WINDOW/STREAM, a
 window or display stream
 handle
 5) OLDPOSITION, the old
 position of the node
 Value: <user-defined>

 After you move a node interactively, this function is called with
the arguments indicated. This function performs any auxiliary tasks
that you may desire, including moving other nodes a like distance.
The distance can be computed from the difference of
NEWPOSITION and OLDPOSITION.

4.3.1.4 GRAPH.ADDNODEFN

 The value of the GRAPH.ADDNODEFN field is a function
which takes the form:

 Function: <graph.addnodefn>
 #Arguments: 2
 Arguments: 1) GRAPH, a graph structure
 2) WINDOW, a window
 handle
 Value: <user defined>

 When you select the "Add a node" item from the graph editing
menu, this function will be invoked. It should return a node which
is added to the graph structure or NIL if no node is to be added to
the graph. After the node is added, it is positioned within the graph.

4.3.1.4 GRAPH.DELETENODEFN

DISPLAY-ORIENTED TOOLS

201

 The value of the GRAPH.DELETENODEFN field is a function
which takes the form:

 Function: <graph.deletenodefn>
 # Arguments: 3
 Arguments: 1) NODE, a graphnode record
 2) GRAPH, a graph record
 3) WINDOW, a window
 handle
 Value: <user defined>

 After you delete a node interactively, this function is called with
the arguments indicated. This function performs any auxiliary tasks
that you may desire, including deleting other nodes (such as
dangling nodes after an intermediate node is deleted) or
repositioning nodes in the graph.

4.3.1.5 GRAPH.ADDLINKFN

 The value of the GRAPH.ADDLINKFN field is a function
which takes the form:

 Function: <graph.addlinkfn>
 # Arguments: 4
 Arguments: 1) FROM, the from node of
 the link
 2) TO, the to node of the link
 3) GRAPH, a graph record
 4) WINDOW, a window
 handle
 Value: <user defined>

 After the link between the nodes FROM and TO has been added
interactively, this function is called with the arguments indicated.

DISPLAY-ORIENTED TOOLS

202

This function performs any auxiliary tasks that you may desire,
including repositioning nodes in the graph.

4.3.1.6 GRAPH.DELETELINKFN

 The value of the GRAPH.DELETELINKFN field is a function
which takes the form:

 Function: <graph.deletelinkfn>
 # Arguments: 4
 Arguments: 1) FROM, the from node of

the link
 2) TO, the to node of the link
 3) GRAPH, a graph record
 4) WINDOW, a window

handle
 Value: <user defined>

 After the link between the nodes FROM and TO has been
deleted interactively, this function is called with the arguments
indicated. This function performs any auxiliary tasks that you may
desire, including repositioning nodes in the graph or possibly
deleting a dangling node. Note that this function may also be called
after you delete a node whence any dangling links are also deleted.

4.3.1.7 GRAPH.FONTCHANGEFN

 The value of the GRAPH.FONTCHANGEFN field is a
function which takes the form:

 Function: <graph.fontchangefn>
 # Arguments: 4
 Arguments: 1) HOW, one of LARGER or
 SMALLER
 2) NODE, a graphnode record

DISPLAY-ORIENTED TOOLS

203

 3) GRAPH, a graph record
 4) WINDOW, a window handle
 Value: <user defined>

 This function is called after you have selected either of the
commands "label smaller" or "label larger" from the
EDITGRAPHMENU.

4.3.2 The Structure of a Graph Node

 Each graph node is represented by a GRAPHNODE record
which has the fields presented in Table 4-7.

Table 4-7. GRAPHNODE Fields

Field Usage

NODELABEL The label displayed in the node.
NODEID A unique identifier for the node.
TONODES A list of all nodes to which links run

from this node.
FROMNODES A list of all nodes from which links

run to this node.
NODEPOSITION The location of the center of the node
NODEFONT The font in which the node's label will

be displayed.
NODEBORDER The shade and width of the border

around the node.
NODELABELSHADE The background shade of the node.
NODEWIDTH The width of the node's

NODELABEL.
NODEHEIGHT The height of the node's

NODELABEL.

 These fields are described in more detail in the following
sections.

DISPLAY-ORIENTED TOOLS

204

4.3.2.1 The Node Label

 The node label is the name of the node which you see when the
node is displayed in the graph. The node label may be

1. a string
2. a bitmap
3. an image object

 If the node label is a text string, it is printed in the node via
PRIN3.

 If the node is a bitmap, it is bit-blitted into the node where the
size of the node is used as the clipping region.

 If the node is an image object, then its IMAGEBOXFN and
DISPLAYFN are used to display the object.

 All other Lisp objects are printed using PRIN3. Thus, the node
label could be the handle of an array, the name of an atom, or a
number.

4.3.2.2 The Node Identifier

 The node identifier is a unique identifier for a node. It is used
in the link field rather than a pointer to the node itself so that circular
Lisp structures can be avoided. A node identifier may be used as the
pointer to the structure represented by the graph.

4.3.2.3 Links To Other Nodes

 The TONODES field is a list of the nodes to which a link runs
from this node. Each entry may be a link description as discussed in
Section 4.3.3.

DISPLAY-ORIENTED TOOLS

205

4.3.2.4 Links From Other Nodes

 The FROMNODES field is a list of nodes from which a link
runs to this node.

4.3.2.5 The Node Position

 The node position specifies the position of the center of the node
in the coordinates of the display stream in which the node is to be
displayed.

4.3.2.6 The Node Font

 The node font is the font in which the node's label will be
displayed if it is a text string. Its value may be any font specification
that can be used by FONTCREATE to generate a font descriptor.

 If it is NIL, the default font is found in the system variable
DEFAULT.GRAPH.NODEFONT, which is usually NIL to indicate
the system default font.

4.3.2.7 The Border of the Node

 The node border specifies the shade and width of the border
surrounding the node. It may take the values presented in Table 4-8.

Table 4-8. Graphnode Border Values

Value Usage

NIL No border.
0 A border of zero width (e.g., no border).
T Black border which is one pixel wide.

1,2,3,... Black border of a width of the number of pixels.
-1,-2,... White border of the width of the number of pixels.

DISPLAY-ORIENTED TOOLS

206

(W S) W is an integer and S is a texture handle or shade
specification; displays a border W pixels wide filled
with the given shade or texture.

4.3.2.8 The Shade of the Node Label

 The node label shade specifies the background shade used to
fill the node in order to highlight the node label. However, this only
works for node labels which are text strings or arbitrary Lisp objects
other than bitmaps and image objects. It may take the values
presented in Table 4-9.

Table 4-9. GraphNode Shade Values

Value Usage

NIL Equivalent to WhiteShade
T Equivalent to BLACKSHADE

a <texture> A texture object
a <bitmap> A bitmap object

 The default value is found in the system variable
DEFAULT.GRAPH.NODELABELSHADE, which is initially NIL.

4.3.2.9 The Node Width and Height

 The node width and node height specify the width and height
of the node. Initially, these are set to be the width and height of the
node's label, respectively.

4.3.3 The Structure of a Link Description

 Entries for the TONODES field can describe the appearance of
the link to be drawn between the source node and the target node
specified in the link description. The link description entry is a list
having the following form:

DISPLAY-ORIENTED TOOLS

207

 (Link%Parameters <ToNodeId> . <ParamList>)

which is interpreted as follows:

 Link%Parameters: a keyword identifying the list as having
a special meaning.

 ToNodeId: is the To node from which a link will be drawn
from the current node.

 ParamList: is a list of parameters affecting the appearance
of the link.

 The properties which may be specified in ParamList are found
as the value of the variable ScalableLinkParameters. Its initial value
is:

<-ScalableLinkParameters
(DASHING LINEWIDTH)

4.3.4 Creating a Node

 You may create a GRAPHNODE record for a new graph node
using the function NODECREATE, which takes the form:

 Function: NODECREATE
 # Arguments: 8
 Arguments: 1) ID, the node identifier
 2) LABEL, the node label
 3) POSITION, the node
 position
 4) TONODEIDS, a list of nodes to
 which links will be drawn from this
 node
 5) FROMNODEIDS, a list of nodes
 which links will be drawn to this node
 6) FONT, the node font

DISPLAY-ORIENTED TOOLS

208

 7) BORDER, the node border
 8) LABELSHADE, the node label
 shade
Value: A GRAPHNODE record.

 NODECREATE returns a GRAPHNODE which has
NODELABEL = ID, NODEPOSITION = POSITION,
NODEFONT = FONT, and BOXNODEFLG = BOXED?. The set
of nodes should be doubly linked so that if a node A is on the
TONODES of B, then B is on the FROMNODES of A. You must
make sure that this constraint is satisfied or LAYOUTGRAPH may
not be able to completely layout the graph.

 The arguments given to NODECREATE have the obvious
interpretations corresponding to the fields of the GRAPHNODE
record as described in Section 4.3.2. Consider the following
examples:

<-(SETQ SNODE (NODECREATE 1 'SENTENCE NIL '(2 3 4))
(1 T NIL NIL NIL NIL NIL (2 3 4)
 NIL
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 SENTENCE NIL)

<-(SETQ SUNODE (NODECREATE 2 'SUBJECT '(1) '(5))
(2 T NIL NIL NIL NIL NIL (5)
 (1)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 SUBJECT NIL)

<-(SETQ PNODE (NODECREATE 3 'PREDICATE '(1) '(9))
(3 T NIL NIL NIL NIL NIL (9)
 (1)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 PREDICATE NIL)

DISPLAY-ORIENTED TOOLS

209

<-(SETQ ONODE (NODECREATE 4 'OBJECT '(1) '(6))
(4 T NIL NIL NIL NIL NIL (6)
 (1)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 OBJECT NIL)

<-(SETQ NPHNODE-1 (NODECREATE 5 'NOUN-PHRASE-
HEAD '(2) '(7))
(5 T NIL NIL NIL NIL NIL (7)
 (2)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 NOUN-PHRASE-HEAD NIL)

<-(SETQ NPHNODE-2 (NODECREATE 6 'NOUN-PHRASE-
HEAD '(4) '(8))
(6 T NIL NIL NIL NIL NIL (8)
 (4)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 NOUN-PHRASE-HEAD NIL)

<-(SETQ HENODE (NODECREATE 7 'HE '(5) NIL))
(7 NIL NIL NIL NIL NIL NIL NIL NIL
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 HE NIL)

<-(SETQ PARKNODE (NODECREATE 7 '(THE PARK) '(6)
NIL))
(8 NIL NIL NIL NIL NIL NIL NIL NIL
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 (THE PARK) NIL)

<-(SETQ GAVENODE (NODECREATE 9 'HE '(3) NIL))
(9 NIL NIL NIL NIL NIL NIL NIL NIL
 (GACHA 10 (MEDIUM REGULAR REGULAR))

DISPLAY-ORIENTED TOOLS

210

 GAVE NIL)

 At a minimum, you must specify the node identifier, the label of
the node, the identifiers of parent nodes, and the identifiers, if any,
of descendent nodes. Other arguments are optional and defaults are
assumed.

 Now, we can create a list of graph nodes for use by
LAYOUTGRAPH as follows:

<-(SETQ GRAPHNODELST
 (LIST SNODE SUNODE PNODE ONODE NPHNODE-1
NPHNODE-2
 HENODE GAVENODE PARKNODE))
((1 T NIL NIL NIL NIL NIL (2 3 4)
 NIL
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 SENTENCE NIL)
 (2 T NIL NIL NIL NIL NIL (5)
 (1)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 SUBJECT NIL)
 (3 T NIL NIL NIL NIL NIL (9)
 (1)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 PREDICATE NIL)
 (4 T NIL NIL NIL NIL NIL (6)
 (1)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 OBJECT NIL)
 (5 T NIL NIL NIL NIL NIL (7)
 (2)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 NOUN-PHRASE-HEAD NIL)
 (6 T NIL NIL NIL NIL NIL (8)

DISPLAY-ORIENTED TOOLS

211

 (4)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 NOUN-PHRASE-HEAD NIL)
 (7 NIL NIL NIL NIL NIL NIL NIL NIL
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 HE NIL)
 (8 NIL NIL NIL NIL NIL NIL NIL NIL
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 (THE PARK) NIL)
 (9 NIL NIL NIL NIL NIL NIL NIL NIL
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 GAVE NIL))

 4.3.5 Displaying a Graph

 You may display a graph on the screen using the function
SHOWGRAPH, which takes the form:

 Function: SHOWGRAPH
 # Arguments: 7
 Arguments: 1) GRAPH, a list of the nodes of the
 graph
 2) WINDOW, the window in which
 the graph will be displayed
 3) LEFTBUTTONFN, a function for
 the left mouse button
 4) MIDDLEBUTTONFN, a function
 for the middle mouse button
 5) TOPJUSTIFYFLG, a flag
 determining the initial position
 of the graph
 6) ALLOWEDITFLG, enables editing
 via the right mouse button
 7) COPYBUTTONEVENTFN, a
 function for handling

DISPLAY-ORIENTED TOOLS

212

 copy-select operations
 Value: The window handle.

 SHOWGRAPH displays the nodes of the graph in the specified
window, if it exists. If WINDOW is NIL, the graph is displayed in
a window which is sized to the graph. Consider the following
example:

<-(SHOWGRAPH vertgraph)
{WINDOW}#74,25000

 which is depicted in Figure 4-21. The graph is displayed in a
vertical orientation because the VERTICAL option was specified
when the graph was laid out by LAYOUTSEXPR.

Figure 4-21 Example of SHOWGRAPH

 If WINDOW is a string, the graph is displayed in a window that
is large enough to hold it and WINDOW becomes the title of the
window.

 If WINDOW exists and is closed, GRAPHER opens the
window to display the graph. If the graph is larger than the window,
the window is made scrollable and the leftmost, topmost portion of
the graph is initially displayed.

DISPLAY-ORIENTED TOOLS

213

4.3.5.1 Justifying the Graph

 TOPJUSTIFYFLG determines where the graph is initially
positioned within the window. If TOPJUSTIFYFLG is T, the
graph's top edge will be displayed at the top edge of the window. If
TOPJUSTIFYFLG is NIL, the graph's bottom edge is displayed at
the bottom edge of the window.

 You may reshape the window containing the graph using the
normal shaping commands in the standard window menu. The list
representing the graph is stored as the value of the GRAPH property
on the window handle.

4.3.5.2 Button Event Functions

 If either LEFTBUTTONFN or MIDDLEBUTTONFN or both
are non-NIL, the window is provided with a BUTTONEVENTFN
which turns the graph into a menu. Whenever the cursor is
positioned over a node of the graph and you press the left or middle
button, the node will be inverted and the appropriate button function
will be called.

 These functions are called with two arguments: the selected
node (e.g., a GRAPHNODE record) and the window. The button
function may access the entire graph through the window's GRAPH
property.

4.3.5.3 Editing a Graph

 If the argument ALLOWEDITFLG is non-NIL, the right mouse
button allows you to select an editing function from a menu
displayed when you press the button while the mouse is positioned
in the Grapher window. The functions in the EDITGRAPHMENU
are:

 Move Node

DISPLAY-ORIENTED TOOLS

214

 Add Node
 Delete Node
 Add Link
 Delete Link
 Change Label
 label smaller
 label larger
 <-> Directed
 <-> Sides
 <-> Border
 <-> Shade

These operations are described in Table 4-10.

Table 4-10. Graph Editing Functions

Function Description

Moving a Node The Move Node operation allows you to move a
node of thJ graph. You are prompted to select a
node with the cursor. You press the left mouse
button and "drag" the node to its new position in
the graph. Note that the links connecting the
selected node to other nodes follow the node as it
moves. GRAPHER automatically adjusts the
length of the links as you drag the node.

Add a Node The Add Node operation allows you to create a
new node for the graph. You are prompted by a
pop-up window to enter the label for the new
node. You terminate the new node label with a
<CR>. The new node is automatically drawn
with a border. You can position the node by
pressing the left mouse button while the cursor
rests on the node and dragging it to its new
position. Figure 4-22 depicts the graph with four
new nodes added (around the area of INDIRECT
OBJECT).

DISPLAY-ORIENTED TOOLS

215

Delete a Node The Delete Node operation allows you to delete a
node from a graph. You are prompted to select a
node with the cursor. It is highlighted in reverse
video and you are prompted for confirmation.
Answering "y" causes the node to be deleted and
any links it has to other nodes. Note that you may
delete intermediate nodes in the graph which will
leave other nodes dangling.

Change Label The Change Label operation allows you to
change the name of a node. After selecting the
node, you are prompted, via a pop-up window, to
enter the new node label. You terminate the new
node label by <CR>.

Adding a Link The Add Link operation allows you to add a new
link between two nodes. You are prompted to
select the FROM and TO nodes with the mouse.
A link is drawn between the two nodes. Figure 4-
23 depicts the graph with links connecting the
INDIRECT OBJECT nodes.

Deleting a Link The Delete Link operation allows you to to delete
a link between two nodes. You are prompted to
select the nodes with the mouse. Note that you
may leave a dangling node by deleting a link
between it and another node.

Making a Label
Smaller

The label smaller operation allows you to reduce
the font size of a node label. GRAPHER reduces
the label to the next smallest font size that it
knows about for a given font. You may continue
this operation until you exhaust the available font
files.

Making a Label
Larger

The label larger operation allows you to
incrementally increase the size of a node label.
GRAPHER increases the node label to the next
largest font size that it knows about for the given
font. You may continue to increase the label size
until you exhaust the available font files. Figure
4-24 depicts the graph after several applications
of these two commands.

DISPLAY-ORIENTED TOOLS

216

<-> Sides The <-> Sides operation moves the links from
the left or right sides of a node to the top or
bottom of a node. It is mainly used for cosmetic
adjustments to the appearance of a graph.

<-> Border The <-> Border operation allows you to place or
remove a border around a node.

<-> Shade The <-> Shade operation allows you to
change the background shade of a node.
Currently, GRAPHER only supports
WHITESHADE or BLACKSHADE. Thus, the
operation is equivalent to inverting the node.

Figure 4-22. Example of Add Node

DISPLAY-ORIENTED TOOLS

217

Figure 4-23. Adding a Link Example

Figure 4-24. Examples of Enlarging and Reducing Labels

4.3.5.4 Handling Copy-Select Events

DISPLAY-ORIENTED TOOLS

218

 If COPYBUTTONEVENTFN has a function as its value, this
function is invoked when you attempt to copy-select an object from
the Grapher window. The default function is COPYINSERT, which
merely creates a Grapher object (see Section 4.3.10).

4.3.6 Laying Out a Graph

 The process of creating a graph is called the "laying out" of the
graph. You may layout a graph using the function
LAYOUTGRAPH, which takes the form:

 Function: LAYOUTGRAPH
 # Arguments: 7
 Arguments: 1) NODELST, a list of nodes
 2) ROOTIDS, a list of root nodes for
 the graph
 3) FORMAT, a specifier for the
 geometry
 4) FONT, the font descriptor
 5) MOTHERD, the minimum distance
 between a mother
 and her daughters
 6) PERSONALD, the minimum
 distance between any two nodes
 7) FAMILYD, the minimum distance
 between two nodes of different nuclear
 families
 Value: A GRAPH record.

 LAYOUTGRAPH "lays out" a partially specified graph by
assigning positions to its graph nodes. Its result is a GRAPH record
which may displayed using SHOWGRAPH. The required fields are
NODELST and ROOTIDS. All other arguments are optional.

DISPLAY-ORIENTED TOOLS

219

 NODELST is a list of partially specified graph nodes. Each
node contains the node identifier, the node label, and the nodes to
which links should be drawn from the current node. Consider this
simple node list:

<-(SETQ NODELST
 (LIST
 (create GRAPHNODE
 NODELABEL <- SENTENCE
 NODEID <- 1
 TONODES <- (2 3 4))
 (create GRAPHNODE
 NODELABEL <- SUBJECT
 NODEID <- 2
 TONODES <- (5))
 (create GRAPHNODE
 NODELABEL <- PREDICATE
 NODEID <- 3
 TONODES <- (6))
 (create GRAPHNODE
 NODELABEL <- OBJECT
 NODEID <- 4
 TONODES <- (7))
 (create GRAPHNODE
 NODELABEL <- NOUN-PHRASE-HEAD
 NODEID <- 5
 TONODES <- (8))
 (create GRAPHNODE
 NODELABEL <- NOUN-PHRASE-HEAD
 NODEID <- 6
 TONODES <- (9))
 (create GRAPHNODE
 NODELABEL <- GAVE
 NODEID <- 7
 TONODES <- NIL))

DISPLAY-ORIENTED TOOLS

220

 (create GRAPHNODE
 NODELABEL <- HE
 NODEID <- 8
 TONODES <- NIL))
 (create GRAPHNODE
 NODELABEL <- (THE PARK)
 NODEID <- 9
 TONODES <- NIL))
))
((1 T NIL NIL NIL NIL NIL (2 3 4)
 NIL
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 SENTENCE NIL)
 (2 T NIL NIL NIL NIL NIL (5)
 (1)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 SUBJECT NIL)
 (3 T NIL NIL NIL NIL NIL (7)
 (1)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 PREDICATE NIL)
 (4 T NIL NIL NIL NIL NIL (6)
 (1)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 OBJECT NIL)
 (5 T NIL NIL NIL NIL NIL (8)
 (2)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 NOUN-PHRASE-HEAD NIL)
 (6 T NIL NIL NIL NIL NIL (9)
 (4)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 NOUN-PHRASE-HEAD NIL)
 (7 NIL NIL NIL NIL NIL NIL NIL NIL
 (GACHA 10 (MEDIUM REGULAR REGULAR))

DISPLAY-ORIENTED TOOLS

221

 GAVE NIL)
 (8 NIL NIL NIL NIL NIL NIL NIL NIL
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 HE NIL)
 (9 NIL NIL NIL NIL NIL NIL NIL NIL
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 (THE PARK) NIL)
)

 All other fields normally specified in a GRAPHNODE record
will be overwritten with defaults or ignored by LAYOUTGRAPH.

 ROOTIDS is a list of the node identifiers of nodes that become
the roots of the graph.

 Now, we can layout the graph described by NODELST as
follows:

<-(SETQ MYGRAPH (LAYOUTGRAPH NODELST '(1)))
(((1 (29 . 24)
 NIL NIL NIL 59 15 (2 3 4)
 NIL
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 SENTENCE NIL)
 ((2 (127 . 7)
 NIL NIL NIL 52 15 (5)
 (1)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 SUBJECT NIL)
 ((3 (106 . 22)
 NIL NIL NIL 10 15 (9)
 (1)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 PREDICATE NIL)
 ((4 (123 . 41)

DISPLAY-ORIENTED TOOLS

222

 NIL NIL NIL 45 15 (6)
 (1)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 OBJECT NIL)
 ((5 (252 . 7)
 NIL NIL NIL 115 15 (7)
 (2)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 NOUN-PHRASE-HEAD NIL)
 ((6 (245 . 41)
 NIL NIL NIL 115 15 (8)
 (4)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 NOUN-PHRASE-HEAD NIL)
 ((7 (360 . 7)
 NIL NIL NIL 17 15 NIL
 (5)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 GAVE NIL)
 ((8 (381 . 41)
 NIL NIL NIL 73 15 NIL
 (6)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 HE NIL)
 ((9 (168 . 22)
 NIL NIL NIL 31 15 NIL
 (3)
 (GACHA 10 (MEDIUM REGULAR REGULAR))
 (THE PARK) NIL))
 T NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)

 NODEFONT is the font specification for printing the node
labels in the graph.

DISPLAY-ORIENTED TOOLS

223

4.3.6.1 Controlling Formatting

 The FORMAT argument controls the geometry of the graph,
e.g., how the graph will be oriented with respect to the window it is
displayed in. It is a list of atoms. There are four basic formats as
presented in Table 4-11.

Table 4-11. Basic Formats

Format Description

COMPACT This is the default format. The graph will be laid out,
if possible, as a forest (e.g., a set of trees) such that
the amount of screen space utilized is minimized.
Figure 4-25 depicts a compact graph generated by
the following expression:

<-(SHOWGRAPH (LAYOUTGRAPH NODELST
ROOTIDS '(COMPACT)))
{WINDOW}#74,25000

FAST The graph is laid out as a forest, but screen space is
sacrificed for speed of display. For large, complex
graphs this is recommended due to the computations
necessary to generate the graph. Figure 4-26 depicts
a graph laid out in FAST format as generated by the
following expression:

<-(SHOWGRAPH (LAYOUTGRAPH NODELST
ROOTIDS '(FAST)))
{WINDOW}#74,25000

LATTICE The graph is laid out as an acyclic directed graph.
Figure 4-27 depicts a graph laid out as a lattice as
generated by the following expression:

<-(SHOWGRAPH (LAYOUTGRAPH NODELST
ROOTIDS '(LATTICE)))
{WINDOW}#74,25000

REVERSE The graph is laid out with the daughters (e.g., leaves)
laid out at the top of the graph. Figure 4-28 depicts a

DISPLAY-ORIENTED TOOLS

224

graph laid out in REVERSE format as generated by
the following expression:

<-(SHOWGRAPH (LAYOUTGRAPH NODELST
ROOTIDS '(REVERSE)))
{WINDOW}#74,25000

Figure 4-25 A Graph laid out in COMPACT Format

DISPLAY-ORIENTED TOOLS

225

Figure 4-26. A graph laid out in FAST format

Figure 4-27. A graph laid out in LATTICE format

DISPLAY-ORIENTED TOOLS

226

Figure 4-28. A Graph laid out in REVERSE format

4.3.6.2 Controlling Graph Orientation

 The orientation of the graph with respect to the window may be
specified by the following atoms in Table 4-12 included after the
formatting specification.

Table 4-12. Graph Orientation Values

Orientation Description

HORIZONTAL The roots of the graph are dpicted at the left edge
of the window and the links run to the right. Figure
4-29 depicts a horizontal compact graph generated
by the following expression:

(SHOWGRAPH (LAYOUTGRAPH NODELST
ROOTIDS '(COMPACT HORIZONTAL)))
{WINDOW}#74,25000

VERTICAL The roots of the graph appear at the top of the
window and the links run from the top to the
bottom of the window. Figure 4-30 depicts a

DISPLAY-ORIENTED TOOLS

227

vertical compact graph generated by the following
expression:

 (SHOWGRAPH (LAYOUTGRAPH NODELST
ROOTIDS '(COMPACT VERTICAL)))
{WINDOW}#74,25000

Figure 4-29 Example of a COMPACT HORIZONTAL graph

DISPLAY-ORIENTED TOOLS

228

Figure 4-30. Example of a COMPACT VERTICAL graph

 The directions of the links may be reversed by including the
atom REVERSE in the format specification.

4.3.6.3 Virtual Nodes

 In complex graphs with many links from one node to other
nodes, the graph may become rather "messy". To avoid this situation
and make the graph clearer, LAYOUTGRAPH will create virtual

nodes in order to consolidate many links going to a single node.
When it does so, NODELST is modified to include the virtual nodes
and the TONODES fields are modified appropriately.

 Whether or not LAYOUTGRAPH creates virtual nodes depends
upon the inclusion of LATTICE in the format specification. The
algorithms for the two cases are sketched out in Section 4.3.6.4 and
4.3.6.5, respectively.

4.3.6.4 Formatting Forests

 When Grapher formats a forest, it first lays out the nodes by
traversing the forest top-down using a depth-first traversal
algorithm. When it finds a node which has already been assigned a
node position, it does not draw a link that might across other nodes
or links. Rather, it creates a copy of the node, which has no
TONODE elements, and inserts it in the graph. It marks the original
node and the virtual node by setting their NODEBORDER and
NODELABELSHADE fields. Thus, a marked node occurs at least
twice in a forest.

DISPLAY-ORIENTED TOOLS

229

 You may control the appearance of marked nodes by adding the
atom MARK to the FORMAT argument. Its tail is a property list
which is interpreted according to Table 4-13.

Table 4-13. MARK Format Values

Format Value Description

NIL No special marking is performed.
BORDER The corresponding value is used in the

NODEBORDER field of the marked nodes.
LABELSHADE The corresponding value is used in the

NODELABELSHADE field of the marked
nodes.

COPIES/ONLY Only new virtual nodes are marked; the
original nodes are left unmarked.

NOT/LEAVES Nodes which have no daughters will not be
specially marked.

4.3.6.5 Formatting Lattices

 If the format specification includes the atom LATTICE, then
virtual nodes which are the daughter of more than one node are not
marked. Instead, links from all of its parents are drawn to it. No
attempt is made to avoid drawing lines through nodes or to minimize
line crossings.

 In HORIZONTAL format, nodes will be positioned in the graph
so that From nodes always appear to the left of To nodes.

 In VERTICAL format, the TONODES of a node are always
positioned beneath it and the FROMNODES are positioned above
it.

 Note, however, that Grapher cannot draw cyclic graphs using
this convention. Thus, whenever Grapher detects a node that points
to itself, it creates a virtual node and marks both the original and the

DISPLAY-ORIENTED TOOLS

230

copy (subject to the format specification as described above).

4.3.6.6 Distance Specifications

 Grapher allows you to specify the distance between pairs of
nodes according to the three criteria presented in Table 4-14.

Table 4-14. Node Distance Criteria

Criterion Description

MOTHERD Specifies the minimum distance between a
mother and her daughter nodes.

PERSONALD Specifies the minimum distance between any two
nodes.

FAMILYD Specifies the minimum distance between two
nodes different parents, but common
grandparents.

 The closest that two nodes will appear in a graph if they are not
sisters is (PLUS PERSONALD FAMILYD).

4.3.7 Editing a Graph

 You may edit a graph using the function EDITGRAPH,
which takes the form:

 Function: EDITGRAPH
 # Arguments: 2
 Arguments: 1) GRAPH, a list representing the
 graph
 2) WINDOW, a window handle
 Value: The list representing the graph, as
 edited.

DISPLAY-ORIENTED TOOLS

231

 EDITGRAPH displays the nodes of the graph in the window.
The conditions concerning graphs and windows operate as described
in SHOWGRAPH.

 EDITGRAPH assigns specific functions to the left and middle
buttons of the mouse which are described in Section 4.3.5.3. Figure
4-31 depicts the EDITGRAPH menu.

Figure 4-31. The EDITGRAPH Menu

4.3.7.1 EDITGRAPH1

 EDITGRAPH1 is the workhorse function that is used by
EDITGRAPH. It takes the form:

 Function: EDITGRAPH1
 # Arguments: 1
 Arguments: 1) WINDOW, a window handle
 Value: NIL

 EDITGRAPH1 assumes that WINDOW already has a graph
displayed in it. It accesses the list representing the graph from the
GRAPH property of the window handle. It allows you to edit a graph
displayed in a window.

DISPLAY-ORIENTED TOOLS

232

4.3.8 Laying Out a Forest

 A forest is a graph which is represented as a set of independent
trees. To layout a forest in a window, you may use the function
LAYOUTFOREST, which takes the form:

 Function: LAYOUTFOREST

Arguments: 8
Arguments: 1) NODELST, a list of nodes

 2) ROOTIDS, a list of nodes which
 are the roots of the trees
 3) FORMAT, a format indicator
 4) BOXING, a flag
 5) FONT, a font descriptor
 6) MOTHERD, minimum distance to
 mother node
 7) PERSONALD, minimum distance
 between any two nodes
 8) FAMILYD, the minimum distance
 between two nodes of different
 nuclear families
 Value: A graph record.

 LAYOUTFOREST lays out a graph as a set of trees (e.g., a
forest). It uses boxing to avoid drawing a set of lines which collide
when the set of trees is not actually a forest. It produces a graph
record which can be displayed with SHOWGRAPH.

 LAYOUTFOREST requires, at a minimum, a node list -
NODELIST, which is a list of GRAPHNODES - and a list of roots
- ROOTIDS, which are the names of nodes which are the roots of
the individual trees. The other arguments are similar to those
described for LAYOUTGRAPH.

DISPLAY-ORIENTED TOOLS

233

 Nodes are laid out by traversing the forest top-down, depth-first.
Whenever a node that has already been laid out is encountered,
LAYOUTFOREST creates a copy of the node rather than drawing
a link to it that might cause it to cross intersecting lines. Hence, a
box around a node indicates that it has occurred at least twice in the
forest.

 BOXING allows you to modify this basic strategy somewhat. It
takes one of the values in Table 4-15.

Table 4-15. Boxing Values

Boxing Value Description

COPIES/ONLY Only copies nodes are boxed; the original
nodes are left unmarked.

NOT/LEAVES Nodes which have no daughters will not be
specially boxed.

 Thus, the choice BOXING = (COPIES/ONLY NOT/LEAVES)
boxes nodes that are copies of nodes that have daughters (i.e., if you
see a box around a node, the node has daughters that aren't drawn).

4.3.9 Laying Out an S-Expression

 LAYOUTGRAPH takes a list of graph nodes as its argument.
It is time-consuming and tedious to construct these graph nodes.
Grapher provides an alternative function, LAYOUTSEXPR, which
takes an S-expression as its argument and creates a graph record. It
takes the form:

 Function: LAYOUTSEXPR
 # Arguments: 7
 Arguments: 1) SEXPR, an S-expression
 2) FORMAT, a format specification
 for the geometry

DISPLAY-ORIENTED TOOLS

234

 3) BOXING, a flag indicating node
 boxing
 4) FONT, the font descriptor
 5, MOTHERD, the minimum distance
 between a mother
 and her daughters
 6) PERSONALD, the minimum
 distance between any two nodes
 7) FAMILYD, the minimum distance
 between two nodes
 of different nuclear families
 Value: A GRAPH record.

 LAYOUSEXPR interprets its arguments in a manner similar to
LAYOUTGRAPH.

 SEXPR is recursively interpreted as follows. If SEXPR is not a
list, its NODELABEL is itself and it has no TONODES (e.g., it is a
single node graph). Otherwise, the CAR of SEXPR is assumed to be
the NODELABEL and its CDR is taken as a list of TONODES.
Thus, the CDR must be a list of S-expressions. Circular S-
expressions are allowed.

 Consider the following example in which a partial graph record
has been printed out.

<-(SETQ graph (LAYOUTSEXPR PARSE))
((((THE)
 (1099 . 122)
 NIL NIL NIL 26 17 NIL
 ((NOUN-PHRASE-HEAD ((NUMPERS (1 3))) THE PARK))
 {FONTCLASS}#70,172764 THE T)
 ((3)
 (496 . 8)
 NIL NIL NIL 12 17 NIL

DISPLAY-ORIENTED TOOLS

235

 ((1 3))
 {FONTCLASS}#70,172764 3 T)
 (PARK
 (1141 . 123)
 NIL NIL NIL 31 15 NIL
 ((NOUN-PHRASE-HEAD ((NUMPERS (1 3))) THE PARK))
 {FONTCLASS}#70,172764 PARK NIL)
 (((NUMPERS (1 3)))
 (1018 . 123)
 NIL NIL NIL 108 15 NIL
 ((NOUN-PHRASE-HEAD ((NUMPERS (1 3)) THE PARK))
 {FONTCLASS}#70,172764 (NUMPERS (1 3)) NIL)
 ...

4.3.10 Creating an Image Object for a Graph

 You may create an image object that encapsulates a graph using
the function GRAPHEROBJ, which takes the form:

 Function: GRAPHEROBJ
 # Arguments: 3
 Arguments: 1) GRAPH, a graph record
 2) HALIGN, an horizontal alignment
 3) VALIGN, a vertical alignment
 Value: An image object handle.

 GRAPHEROBJ creates an image object that can display
GRAPH. The arguments HALIGN and VALIGN specify how the
graph is to be aligned with respect to some reference point in the
host stream in which it is displayed. Consider the following
example:

<-(GRAPHEROBJ vertgraph)
{IMAGEOBJ}#74,36306

DISPLAY-ORIENTED TOOLS

236

 The OBJECTDATUM field of the image object contains the
graph structure.

 HALIGN and VALIGN take values between 0 and 1. These
values specify the proportion of the width and height of the graph
will overlay its reference point. A value of 0 means the graph is
displayed to the left and above of the reference point, while a value
of 1 means that it will be displayed to the right and below. They can
also take a pair of values of the form

 (<node-specification> <position>)

where <node-specification> is the node identifier of the graph that
it is to be aligned by and <position> is a location in the node where
the alignment point is.

4.3.10.1 Specifying a Frontier Node

 The <node-specification> may also be one of the atoms: *TOP*,
BOTTOM, *LEFT*, *RIGHT*, which indicates the node of the
graph to use for alignment.

4.3.10.2 Specifying the Position

 The <position> may be a floating-point number which specifies
a proportional distance from the lower left corner of the node. Or, it
may be the atom BASELINE which indicates the character nearest
the baseline.

4.3.11 Determining the Minimal Graph Region

 You may use GRAPHREGION to determine the smallest
region which can contain all nodes of a graph when they are laid out
according to the specifications given LAYOUTGRAPH. It takes the

DISPLAY-ORIENTED TOOLS

237

form:

 Function: GRAPHREGION
 # Arguments: 1
 Arguments: 1) GRAPH, a graph structure
 Value: A region specification.

 GRAPHREGION computes the smallest region that will
contain all of the nodes of the graph when fully displayed. This
function is useful when you are deciding where and how to display
a graph. You may create a graph using LAYOUTGRAPH and then
determine the region necessary to display. Using this value, you can
determine the size of the window that you want to open to display
the graph. Consider the example:

<-(GRAPHREGION vertgraph)
(-7 0 908 302)

<-(GRAPHREGION horizgraph)
(0 0 531 183)

4.3.12 Inverting a Graph Node

 When you select a graph node, Grapher inverts the node and a
local region to indicate that it has been selected. You may use
FLIPNODE to invert graph nodes that are selected inside user-
provided editing functions. It takes the form:

 Function: FLIPNODE
 # Arguments: 2
 Arguments: 1) NODE, a graph node
 2) WINDOW/STREAM, a window or
 display stream handle
 Value: T.

DISPLAY-ORIENTED TOOLS

238

 FLIPNODE inverts a region around the specified node that is
one pixel larger than the image of the node itself. Consider the
following example:

<-(SETQ mynode (CADAR mygraph))
(BOOK (360 . 175)
 NIL
 NIL
 NIL
 31 15
 NIL
 ((NOUN-PHRASE-HEAD
 ((NUMPERS (1 3)))
 THE BOOK))
 {FONTCLASS}#70,172764 BOOK NIL)

<-(FLIPNODE mynode iw)
T

4.3.13 Resetting the Node Border

 You may reset the border (e.g., size) of a node using the function
RESET/NODE/BORDER, which takes the form:

 Function: RESET/NODE/BORDER
 # Arguments: 4
 Arguments: 1) NODE, a graph node
 2) BORDER, an integer or 'INVERT
 3) WINDOW/STREAM, a window or
 display stream handle
 4) GRAPH, a graph structure
 Value: The graphnode record.

 This function changes the border of the node of the graph which
is displayed in the window associated with WINDOW/STREAM.

DISPLAY-ORIENTED TOOLS

239

Changing the node border may change the size of the node. If it does,
the lines leading to and from the node will be redrawn. This may
also change the position of the node in the graph. Because the node
position and line positions are computed as a function of the entire
graph, the graph structure must be made available to this function.
Consider the following examples:

<-(RESET/NODE/BORDER mynode
 'INVERT
 IW
 mygraph)
(BOOK (360 . 175)
 NIL
 NIL
 NIL
 31 15
 NIL
 ((NOUN-PHRASE-HEAD
 ((NUMPERS (1 3)))
 THE BOOK))
 FONTCLASS}#70,172764
 BOOK
 T
)

 The value of BORDER may be the atom INVERT which causes
the border to be displayed in an inverted form.

4.3.14 Resetting the Node's Label Shade

 You may change the shade with which the label of a node is
displayed using the function RESET/NODE/LABELSHADE,
which takes the form:

 Function: RESET/NODE/LABELSHADE

DISPLAY-ORIENTED TOOLS

240

 # Arguments: 3
 Arguments: 1) NODE, a graph node
 2) SHADE, a shade specification

 3) WINDOW/STREAM, a window or
 display stream handle

 Value: The graphnode record.
 Often, you will want to change the node's label shade to indicate
some special condition about the node, such as an active node in a
search or traversal of the graph. Consider the following example:

<-(RESET/NODE/SHADE mynode GRAYSHADE IW)
(BOOK (360 . 175)
 NIL
 NIL
 43605
 31 15
 NIL
 ((NOUN-PHRASE-HEAD
 ((NUMPERS (1 3))
 THE BOOK))
 {FONTCLASS}#70,172764
 BOOK
 T
)

 SHADE may take the atom INVERT which causes the node's
label shade to be inverted.

4.3.15 Dumping a Graph to a File

 In order to save a graph on a file, you should use the function
DUMPGRAPH, which takes the form:

 Function: DUMPGRAPH
 # Arguments: 2

DISPLAY-ORIENTED TOOLS

241

 Arguments: 1) GRAPH, a graph specification
 2) STREAM, a display stream handle
 Value: A compact form of the graph.

 When graphs become complex, the graph specification can
grow exponentially because of the number of linkages that must be
represented among the nodes. DUMPGRAPH prints the graph on
STREAM in a compact form which can be read by READGRAPH
(see below).

 The IRM notes that a graph cannot be saved on a file using the
standard print functions because the Grapher uses FASSOC to fetch
a graph node using its identifier. You could use HPRINT, but it
dumps a total description of the node each time it is mentioned.
DUMPGRAPH rectifies this problem by compacting the
specification in a form that is easily understood by READGRAPH.
Consider the following example:

<-(OPENFILE 'SHKGRAPH.TXT 'OUTPUT 'NEW)
{DSK}<LISPFILES>SHKGRAPH.TXT;1

<-(DUMPGRAPH vertgraph 'SHKGRAPH.TXT)
NIL

<-(CLOSEF 'SHKGRAPH.TXT)
{DSK}<LISPFILES>SHKGRAPH.TXT;1

 Now, we can inspect the contents of the file SHKGRAPH.TXT
by sending it to the printer. A portion of the contents appears as:

(FIELDS ()

IDS 28 (3)
 PARK THE ((NUMPERS (1 3)))
 (NOUN-PHRASE_HEAD ((NUMPERS (1 3))))
 THE PARK)

DISPLAY-ORIENTED TOOLS

242

((NUMPERS (1 3)))
 (OBJECT ((NUMPERS (1 3)))
 (NOUN-PHRASE-HEAD
 ((NUMPERS (1 3)))
 THE PARK))
GAVE T (TRANSITIVE T) (1 3) (VNUMPERS (1 3)) PAST

(TENSE PAST) ((COMPLEMENT NIL) (TENSE PAST) ...)
FONTS 1 (CLASS DEFAULTFONT 1 (GACHA 10)
(GACHA 8) (TERMINAL 8) (4045XLP (TITAN 10)))
NODES (
 (1 3
 (496 . 8) 1 T NIL NIL (11))
 (2 PARK
 (885 . 123) 1 NIL NIL NIL (5))
 (3 THE
 (844 . 123) 1 NIL NIL NIL (5))
 (4 (NUMPERS (1 3))
 (764 . 123) 1 NIL NIL NIL (5))
 (5 NOUN-PHRASE-HEAD
 (824 . 180) 1 NIL NIL (4 3 2) (7))
 (6 (NUMPERS (1 3))
 (699 . 180) 1 NIL NIL NIL (7))
 (7 OBJECT
 (761 . 237) 1 NIL NIL (6 5) (28))
 ...

 Note that there four major descriptors in the file: FIELDS,
IDS, FONTS, and NODES. This compact form serves to describe
the entire graph so that READGRAPH can recreate the graph
structure (see below).

4.3.16 Reading a Graph from a File

 You may read a description of a graph from a file or stream
using the function READGRAPH, which takes the form:

DISPLAY-ORIENTED TOOLS

243

 Function: READGRAPH
 # Arguments: 1
 Arguments: 1) STREAM, a display stream handle
 Value: A graph specification.

 READGRAPH reads the information necessary to reconstruct a
graph specification from STREAM. It starts at the current file
pointer. It returns a graph structure equivalent to the one compacted
by DUMPGRAPH. Consider the following example:

<-(OPENFILE 'SHKGRAPH.TXT 'INPUT 'OLD)
{DSK}<LISPFILES>SHKGRAPH.TXT;1

<-(SETQ MYGRAPH (READGRAPH 'SHKGRAPH.TXT))
((((3)
 (496 . 8)
 NIL NIL NIL NIL NIL NIL
 ((1 3))
 {FONTCLASS}#70,172,740 3 T)
 (PARK
 (885 . 123)
 NIL NIL NIL NIL NIL NIL
 ((NOUN-PHRASE-HEAD ((NUMPERS (1 3))) THE PARK))
 {FONTCLASS}#70,172740 PARK NIL)
 (THE
 (844 . 123)
 NIL NIL NIL NIL NIL NIL
 ((NOUN-PHRASE-HEAD ((NUMPERS (1 3))) THE PARK)
 {FONTCLASS}#70,172740 THE NIL)
 (((NUMPERS (1 3)))
 (764 . 123)
 NIL NIL NIL NIL NIL NIL
 ((NOUN-PHRASE-HEAD ((NUMPERS (1 3))) THE PARK))
 {FONTCLASS}#70,172740 (NUMPERS (1 3)) NIL)

DISPLAY-ORIENTED TOOLS

244

 ...

Graphics

245

5. Graphics

 Because Interlisp operates in a bitmapped display environment, it
can provide a powerful graphics facility for drawing pictures, charts,
and other diagrams. Interlisp also provides a few graphics routines.
Using these routines, you can build a powerful graphics programming
environment.

5.1 Basic Concepts

 I have created the following image stream to be used in the various
examples:

<-(SETQ IMS
 (OPENIMAGESTREAM "Sample Image Stream"
 '(500 10 500 250))
{STREAM}#65,16320

 Thus, I generally will not show the creation of an image
stream in the following examples, but merely refer to IMS.

 Image streams were discussed in Chapter 7. An image stream is
the basic destination for all graphics operations.

5.1.1 Brushes

 For certain drawing functions, Interlisp provides different types of
brushes for painting the pattern on the display stream. The types of
brushes are:

1. ROUND
2. SQUARE
3. HORIZONTAL

Graphics

246

4. VERTICAL
5. DIAGONAL

 Figure 5-1 depicts an example of a round brush.

<-(SET.DSP.POSITION 100 100 awindow)
(100 . 100)

 Draw a curve using a round brush with dashing:

<-(DRAWCURVE '((100 . 100)
 (100 . 150)
 (50 . 275)
 (250 . 345))
 T
 '(ROUND 3)
 '(5 5)
 awindow)

Graphics

247

Figure 5-1. An Example of a ROUND Brush with dashing

 A brush is specified as a three element list whose form is:

 (<shape> <width> <color>)

where: <shape> is one of the brush types
 <width> is the number of pixels
 comprising the brush
 <color> is the color of the brush

 The default brush type is (ROUND 1). If BRUSH is specified as
NIL in any of the drawing functions, the default brush type will be

Graphics

248

used. A brush type may also be specified as an integer (such as "3"),
which is interpreted as a round brush of width 3 pixels.

5.1.1.1 Installing a New Brush

 You may define new brush shapes using the function
INSTALLBRUSH, which takes the form:

 Function: INSTALLBRUSH
 # Arguments: 3
 Arguments: 1) BRUSHNAME, the name of the
 brush
 2) BRUSHFN, a brush function
 defining its bitmap
 3) BRUSHARRAY, a hand-crafted
 brush description (optional)
 Value: NIL.

 The brush name us is added to the list of brushes known to the
system. BRUSHFN specifies the bitmap which is used when the brush
is used.

5.1.1.2 Drawing a Brush

 You can draw an image of a brush at a point using the function
DRAWPOINT, which takes the form:

 Function: DRAWPOINT
 # Arguments: 5
 Arguments: 1) X, an X coordinate
 2) Y, a Y coordinate
 3) BRUSH, a brush
 specification
 4) STREAM, a display stream handle
 5) OPERATION, a bitmap operation

Graphics

249

 Value: T

 DRAWPOINT draws an image of the brush at the point (X,Y) in
STREAM using the specified operation. BRUSH may be a bitmap or
a brush. The default operation is PAINT. Consider the following
example:

<-(DRAWPOINT 100 100 '(ROUND 50) IMS 'PAINT)
T

 I made the brush 50 pixels wide so that it would be easy to see in
the figure.

Figure 5-2. Example of a ROUND Brush

 The center of the brush is located at the point (X,Y).

 Now, here is an example of a square brush.

Graphics

250

<-(DRAWPOINT 100 100 '(SQUARE 50) IMS 'PAINT)
T

Figure 5-3. Example of a SQUARE Brush

5.1.1.3 Reading the Brush Shape

 You can prompt a user to select a brush shape using the function
PAINTW.READBRUSHSHAPE, which takes the form:

 Function: PAINTW.READBRUSHSHAPE
 # Arguments: 0
 Arguments: N/A
 Value: A brush shape.

 PAINTW.READBRUSHSHAPE displays a menu of the currently
installed brush shapes at the current location of the cursor. You may
select one of the brush shapes by pointing to it and clicking the left

Graphics

251

mouse button. Alternatively, NIL will be returned by clicking any
mouse button outside of the menu. The initial form of the menu is:

DIAGONAL
VERTICAL
HORIZONTAL
SQUARE
ROUND

 Consider the following example:

<-(PAINTW.READBRUSHSHAPE)
VERTICAL

where I pointed at the "vertical" item in the menu and clicked the left
mouse button.

5.1.1.4 Reading the Brush Size

 You can prompt the user to select a brush size using the function
PAINTW.READBRUSHSIZE, which takes the form:

 Function: PAINTW.READBRUSHSIZE
 # Arguments: 0
 Arguments: N/A
 Value: A brush size.

 PAINTW.READBRUSHSIZE displays the menu show below and
waits for you to select one of the entries. Moving the mouse off the
menu and clicking the left mouse button will return the value NIL. The
valid brush sizes are 1,2,4,8, and 16. Consider the following example:

<-(PAINTW.READBRUSHSIZE)
16

Graphics

252

where I pointed at the "16" item in the menu and clicked the left mouse
button.

5.1.1.5 Reading a Brush Shade

 You can prompt the user to select a brush shade using the function
PAINTW.READBRUSHSHADE, which takes the form:

 Function: PAINTW.READBRUSHSHADE
 # Arguments: 0
 Arguments: N/A
 Value: A brush shade.

 PAINTW.READBRUSHSHADE displays a menu of the standard
brush shades at the current location of the cursor. You may select one
of the brush shades by pointing to it and clicking the left mouse button.
Alternatively, NIL will be returned by clicking any mouse button
outside of the menu. The initial form of the menu is depicted in Figure
5-4.

Graphics

253

Figure 5-4. Menu of Brush Shades

 Consider the following example:

<-(PAINTW.READBRUSHSHADE)
43605

which corresponds to the numerical value of GRAYSHADE which I
selected with the mouse.

 Choosing the 4x4 shade opens a bitmap window as depicted in
Figure 5-5. You may set pixels of the 4x4 region. When you have
tailored your shade, select QUIT to exit. Figure 5-6 depicts a tailored
shade whose value is 17417.

Graphics

254

Figure 5-5. Tailoring a 4x4 Shade

Graphics

255

Figure 5-6. The Tailored Shade

5.1.1.6 Getting a Brush Bitmap

 You can create a bitmap with an image of the appropriate brush
in it using the function \BRUSHBITMAP, which takes the form:

 Function: \BRUSHBITMAP
 # Arguments: 2
 Arguments: 1) BRUSHSHAPE, the shape of the
 brush

Graphics

256

 2) BRUSHWIDTH, the width of the
 brush
 Value: A bit map handle.

 This function creates a bit map in which is centered a brush image
of the appropriate type and size. The bit map is sized to the width of
the brush. You may then edit the bit map to create new brushes.
Consider the following example which I have edited to create a
checkered brush:

<-(\BRUSHBITMAP 'ROUND 20)
{BITMAP}#61,166360

 The checkered brush is depicted in Figure 5-7.

Figure 5-7. A Checkered Brush

Graphics

257

5.1.2 Operations

 A limited number of operations are supported by the drawing
functions:

1. Only the PAINT operation is supported by most types of
image streams.

2. Most display streams will accept the INVERT operation for
curve drawing when the brush is (ROUND 1).

3. When the brush size is larger than 1, most curve drawing
operations use the ERASE operation rather than the
INVERT operation.

4. For curve drawing operations on display streams, the
REPLACE operation is treated the same as the PAINT
operation.

5.1.3 Dashing

 The DASHING argument in the following functions is a list of
positive integers that determines the dashing characteristics of the
line being drawn. A dashing specification is composed of pairs of
integers of the form <dash-size> <gap-size> where:
 <dash-size> Indicates the number of pixels the brush
 will paint on the display stream
 <gap-size> Indicates the number of pixels the brush
 will not paint on the display stream

 These pairs are repeated to indicate variablility in the types of
dashed lines that you may wish to draw.

 The dashing sequence is repeated from the beginning when the
list is exhausted until the drawing function is completed. If
DASHING is NIL, the line to be drawn is not dashed.

Graphics

258

5.2 Lines and Curves

 The primitive graphics functions provided by Interlisp allow you
to draw lines and curves. The target of each function is a display
stream or a bitmap.

5.2.1 Drawing a Line

 Interlisp provides four functions for drawing a straight line
between two points. They differ in how the starting point for the line
is specified.

5.2.1.1 From the Current Position

 DRAWTO draws a line from the current position specified of
the destination bitmap to the given position. It takes the form:

 Function: DRAWTO
 # Arguments: 7
 Arguments: 1) X, an X-axis coordinate
 2) Y, a Y-axis coordinate
 3) WIDTH, the width of the line
 4) OPERATION, a bitblt operation
 5) DISPLAYSTREAM, a display
 stream or bitmap
 6) COLOR, the color of the line
 7) DASHING, a dashing specification
 Value: The old Y-axis coordinate.

 DRAWTO draws a line from the current position of the
destination bitmap to the point (X,Y). The current position of
DISPLAYSTREAM is set to (X,Y). Consider the following example,
which demonstrates several calls to DRAWTO:

Graphics

259

<-(SETQ XW (CREATEW))
{WINDOW}#56,43000

 Now, set the starting point for the drawing operations:

<-(SET.DSP.POSITION 100 100 XW)
(100 . 100)

 Draw a straight line from (100 . 100) to (200 . 200) using the
default brush:

<-(DRAWTO 200 200 'PAINT (WINDOWPROP XW 'DSP))
100

 And, draw the following lines to complete a triangle, which is
depicted in Figure 5-8:

<-(DRAWTO 100 300 'PAINT (WINDOWPROP XW 'DSP))
200
<-(DRAWTO 100 100 'PAINT (WINDOWPROP XW 'DSP))
300

Graphics

260

Figure 5-8. A DRAWTO Example

 If the destination bitmap supports multiple bits per pixel (because
it can be displayed on a color monitor), COLOR specifies the color to
be used to draw the line. If COLOR is NIL, the default color,
DSPCOLOR, of DISPLAYSTREAM will be used.

5.2.1.2 Relative Drawing

 RELDRAWTO draws a line from the current position of the
display stream to a point that is displaced DX pixels along the X-axis
and DY pixels along the Y-axis. It takes the form:

 Function: RELDRAWTO
 # Arguments: 7
 Arguments: 1) DX, an X-axis coordinate
 displacement

Graphics

261

 2) DY, a Y-axis coordinate
 displacement
 3) WIDTH, the width of the line
 4) OPERATION, the bitblt operation
 5) DISPLAYSTREAM, a display
 stream or bitmap
 6) COLOR, the color of the line
 7) DASHING, a dashing specification
 Value: The new Y-axis coordinate.

 RELDRAWTO draws a line from the current position in the
display stream to a new position which is displaced by DX pixels in
the X-direction and DY pixels in the Y-direction. Both DX and DY
must be specified and must be non-NIL. Consider the following
example, which is depicted in Figure 5-9:

<-(SET.DSP.POSITION 100 100 IMS)
(100 . 100)

<-(RELDRAWTO 100 200 5 'PAINT IMS)
100

Graphics

262

Figure 5-9. Example of RELDRAWTO

5.2.1.3 Absolute Drawing

 DRAWLINE draws a line from the point (X1,Y1) to the point
(X2,Y2) on the destination display stream. It takes the form:

 Function: DRAWLINE
 # Arguments: 9
 Arguments: 1) X1, an X-axis coordinate
 2) Y1, a Y-axis coordinate
 3) X2, an X-axis coordinate
 4) Y2, a Y-axis coordinate
 5) WIDTH, the width of the line
 6) OPERATION, the bitblt operation
 7) DISPLAYSTREAM, a display
 stream or bitmap
 8) COLOR, the color of the line

Graphics

263

 9) DASHING, a dashing specification
Value: A coordinate value.

 DRAWLINE draws lines from the point (X1,Y1) to the point
(X2,Y2) in the specified display stream. Consider the following
example, whose results are depicted in Figure 5-10:

<-(DRAWLINE 100 100 100 200 10 'PAINT IMS)
285
<-(DRAWLINE 300 100 300 200 10 'PAINT IMS)
200
<-(DRAWLINE 100 100 300 200 10 'PAINT IMS)
200
<-(DRAWLINE 100 200 300 100 10 'PAINT IMS)
100

Figure 5-10. Example of DRAWLINE

Graphics

264

 If any of the coordinates are NIL, DRAWLINE returns the error
message "NON-NUMERIC ARG".

5.2.1.4 Drawing Between Positions

 DRAWBETWEEN draws a line from POS1 to POS2 on the
destination display stream. It takes the form:

 Function: DRAWBETWEEN
 # Arguments: 7
 Arguments: 1) POS1, a position
 2) POS2, a position
 3) WIDTH, the width of the line
 4) OPERATION, the drawing
 operation
 5) DISPLAYSTREAM, a display
 stream or bit map
 6) COLOR, the color of the line
 7) DASHING, a dashing specification
 Value: The new Y-axis coordinate.

 Consider the following example:

<-(SET.DSP.POSITION (POINT 100 100) awindow)
(100 . 100)

<-(DRAWBETWEEN (POINT 100 100)
 (POINT 200 200)
 100
 'PAINT
 awindow)
200

Graphics

265

which draws a diagonal line between the respective points as depicted
in Figure 5-4.

Figure 5-11. An Example of DRAWBETWEEN

 If either POS1 or POS2 is NIL, DRAWBETWEEN prints the error
message "NON-NUMERIC ARG".

5.2.2 Drawing Curves

 A curve is described by a set of points to which a spline function
will be fitted. DRAWCURVE craws a curve in the destination bit
map. It takes the form:

Graphics

266

 Function: DRAWCURVE
 # Arguments: 5
 Arguments: 1) KNOTS, a list of trajectory points
 2) CLOSED, a flag indicating
 spline
 closure
 3) BRUSH, the type of brush
 4) DASHING, the dashing
 characteristics
 5) DISPLAYSTREAM, a display
 stream handle
 Value: A display stream handle.

 Consider the following examples:

<-(SETQ KNOTS
 (LIST (POINT 100 100)
 (POINT 125 175)
 (POINT 190 225))
)
((100 . 100) (125 . 175) (190 . 225))

<-(DRAWCURVE KNOTS T NIL NIL IMS)
{STREAM}#64,72470

<-(SETQ KNOTS
 (LIST (POINT 10 10)
 (POINT 200 200)
 (POINT 50 200)
 (POINT 100 50)
 (POINT 200 200))
)
((10 . 10) (200 . 200) (50 . 200) (100 . 50) (200 . 200))

<-(DRAWCURVE KNOTS T NIL NIL IMS)

Graphics

267

{STREAM}#64,72470

 These curves are depicted in Figures 5.12 and 5.13 respectively.

Figure 5-12. A DRAWCURVE Example

Graphics

268

Figure 5-13. Another DRAWCURVE Example

 Note that DRAWCURVE processes the points for the curve in
sequential order. Thus, lines between points may cross other lines
unless the points are sorted. You must ensure that the lines drawn will
not cross before you supply the list of points to DRAWCURVE.

5.2.3 Drawing a Gray Box

 Interlisp uses gray boxes to outline objects in windows. A system
routine, DRAWGRAYBOX, allows you to draw a gray box of any
proportion in a given window. It takes the following form:

 Function: DRAWGRAYBOX
 # Arguments: 6
 Arguments: 1) X1, x-coordinate of lower left corner
 2) Y1, y-coordinate of lower left corner
 3) X2, width in x-direction

Graphics

269

 4) Y2, height in y-direction
 5) WINDOW/STREAM, a window or
 display stream handle
 6) SHADE, a shade
 Value: A display stream handle.

 DRAWGRAYBOX allows you to draw a gray box in the specified
window at the location given by (X1,Y1). The dimensions of the box
are given by (X2,Y2). The shade of the border of the box is given by
SHADE. It may be a number of a bitmap. Consider the following
example:

<-(DRAWGRAYBOX 100 100 200 200 IOWINDOW
GRAYSHADE)
T

which is depicted in Figure 5-14.

Graphics

270

Figure 5-14. Example of DRAWGRAYBOX

5.3 Rectangles

 One of the most useful graphics primitives is the ability to draw
rectangles. Interlisp does not provide a primitive function for drawing
a rectangle (creating a region is a different paradigm). This section
will describe a set of functions for creating and manipulating
rectangles. A new datatype, RECTANGLE, is created to store
information about the rectangle.

 A rectangle is a four-sided polygon whose opposite sides are
both parallel and of equal length. A square is a degenerate rectangle
in that all four sides must have the same length. This characteristic
allows us to describe a rectangle by exactly two points: the lower left
corner and the upper right corner (see figure 5-x).

 To describe a rectangle in Medley Interlisp, let us create the
record RECTANGLE which consists of two position specifications:
the lower left corner, identified by LLCORNER, and the upper right
corner, URCORNER. It is defined by:

<-(TYPERECORD RECTANGLE (LLCORNER . URCORNER))
RECTANGLE

 LLCORNER and URCORNER have a default field type of
POINTER which allows them to store position handles.

 Note: I do not describe a rectangle as a region because Interlisp
currently represents regions as four element lists rather than distinct
object. Moreover, regions are abstract objects which are not directly
displayed on the screen but are associated with manipulable objects
such as windows.

Graphics

271

5.3.1 Creating a Rectangle

 You may create a rectangle by specifying the X and Y
coordinates of the lower left and upper right corners. RECTANGLE
is a function which creates a rectangle:

 Function: RECTANGLE
 # Arguments: 4
 Arguments: 1) LLX, the lower left X-axis
 coordinate
 2) LLY, the lower left Y-axis
 coordinate
 3) URX, the upper right X-axis
 coordinate
 4) URY, the upper right Y-axis
 coordinate
 Value: A RECTANGLE datatype handle.

 RECTANGLE creates an instance of the datatype RECTANGLE
and returns its handle as the value. Let us define RECTANGLE as
follows:

<-(DEFINEQ (rectangle (llx lly urx ury)
 (create RECTANGLE
 LLCORNER <- (POINT llx lly)
 URCORNER <- (POINT urx ury)
)
))
(RECTANGLE)

 Let us create a rectangle whose lower left corner is located at
point (100,200) and whose upper right corner is located at point
(500,600).

<-(SETQ arectangle (RECTANGLE 100 200 500 600))

Graphics

272

(RECTANGLE (100 . 200) 500 . 600)

 We can then access the elements of the rectangle using the record
package access mechanisms as follows:

<-(fetch LLCORNER of ARECTANGLE)
(100 . 200)

<-(fetch XCOORD of (fetch LLCORNER of ARECTANGLE))
100

and so on.

5.3.1.1 Creating a Square

 As we mentioned above, a square is a degenerate form of a
rectangle which has all sides of equal length. We can use
RECTANGLE to create a square, but we would like to ensure that the
sides are of equal length. SQUARE takes a point (X,Y) and the length
of the sides as its arguments, creates a square rectangle, and returns
the rectangle handle. It takes the form:

 Function: SQUARE
 # Arguments: 3
 Arguments: 1) LLX, the lower left X-axis
 coordinate
 2) LLY, the lower left Y-axis
 coordinate
 3) LENGTH, the length of a side
 Value: A rectangle handle.

 Let us define SQUARE as follows:

<-(DEFINEQ (square (llx lly length)
 (rectangle llx lly

Graphics

273

 (iplus llx length)
 (iplus lly length)
)
))
(SQUARE)

 Thus, if we wanted to create a square whose origin is (200,200)
and whose sides have length 300, we would execute the following
expression:

<-(SQUARE 200 200 300)
(RECTANGLE (200 . 200) 500 . 500)

<-(SQUARE 200 200 -250)
(RECTANGLE (200 . 200) -50 . -50)

5.3.1.2 Accessing Rectangle Parameters

 Because a rectangle is a user-defined datatype, you may access the
parameters describing the rectangle using the record package access
functions. However, expressions involving these access functions may
be come quite lengthy, so we define two utility functions to provide
this information: LOWERLEFT and UPPERRIGHT, which take
the form:

 Function: LOWERLEFT
 UPPERRIGHT
 # Arguments: 1
 Arguments: 1) RECTANGLE, a rectangle handle
 Value: The respective point (X,Y) specified by
 the function.

Let us define these functions as follows:

<-(DEFINEQ (lowerleft (arectangle)

Graphics

274

 (IF (TYPE? RECTANGLE arectangle)
 THEN
 (fetch LLCORNER of arectangle))
))
(LOWERLEFT)

<-(DEFINEQ (upperright (arectangle)
 (IF (TYPE? RECTANGLE arectangle)
 THEN
 (fetch URCORNER of arectangle))
))
(UPPERRIGHT)

Consider the following example:

<-(SETQ SQ1 (SQUARE 100 100 150))
(RECTANGLE (100 . 100) 250 . 250)

<-(LOWERLEFT SQ1)
(100 . 100)

<-(UPPERRIGHT SQ1)
(250 . 250)

5.3.1.3 Displaying a Rectangle

 You may display a rectangle within a window using the function
DISPLAY.RECTANGLE, which takes the form:

 Function: DISPLAY.RECTANGLE
 # Arguments: 2
 Arguments: 1) WINDOW, a window handle
 2) RECTANGLE, a rectangle handle
 Value: The X-coordinate.

Graphics

275

We might define DISPLAY.RECTANGLE as follows:

<-(DEFINEQ (display.rectangle (window rectangle)
 (IF (TYPE? rectangle RECTANGLE)
 THEN
 (DRAWBETWEEN (LOWERLEFT rectangle)
 (POINT (fetch XCOORD of (LOWERLEFT rectangle))
 (fetch YCOORD of (UPPERRIGHT
 rectangle)))
 1
 PAINT
 window)
 (DRAWBETWEEN (LOWERLEFT rectangle)
 (POINT (fetch XCOORD of (LOWERLEFT rectangle))
 (fetch YCOORD of (UPPERRIGHT rectangle)))
 1
 'PAINT
 window)
 (DRAWBETWEEN (UPPERRIGHT rectangle)
 (POINT (fetch YCOORD of (UPPERRIGHT rectangle))
 (fetch XCOORD of (LOWERLEFT rectangle)))
 1
 'PAINT
 window)
 (DRAWBETWEEN (UPPERRIGHT rectangle)
 (POINT (fetch YCOORD of (LOWERLEFT rectangle))
 (fetch XCOORD of (UPPERRIGHT rectangle)))
 1
 'PAINT
 window)
)
))
(DISPLAY.RECTANGLE)

 Consider the following example which is depicted in Figure 5-15:

Graphics

276

<-SQ1
(RECTANGLE (100 . 100) 250 . 250)

<-(DISPLAY.RECTANGLE IOWINDOW SQ1)
100

Figure 5-15. RECTANGLE Example

5.3.2 Rectangle Functions

 A number of commonly used functions may be defined for
rectangles. These are described and defined in the following sections.

5.3.2.1 Height and Width

Graphics

277

 The height and width of a rectangle are used in many applications.
Let us define two functions - HEIGHT and WIDTH - which calculate
these values for an arbitrary rectangle. They take the form:

 Function: HEIGHT
 WIDTH
 # Arguments:
 Arguments: 1) RECTANGLE, a rectangle handle
 Value: The respective measurement specified
by the function.

 We can define HEIGHT and WIDTH as follows:

<-(DEFINEQ (height (rectangle)
 (IDIFFERENCE
 (fetch YCOORD of (UPPERRIGHT rectangle))
 (fetch YCOORD of (LOWERLEFT rectangle)))))
(HEIGHT)

<-(DEFINEQ (width (rectangle)
 (IDIFFERENCE
 (fetch XCOORD of (UPPERRIGHT rectangle))
 (fetch XCOORD of (LOWERLEFT rectangle))
))
(WIDTH)

 Consider the following examples:

<-(WIDTH arectangle)
300

<-(HEIGHT arectangle)
300

Graphics

278

5.3.2.2 Finding The Rectangle's Center

 You may find the rectangle's center by executing CENTER,
which takes the form:

 Function: CENTER
 # Arguments: 1
 Arguments: 1) RECTANGLE, a rectangle handle
 Value: A position.

 CENTER returns the position whose components specify the
center point of the rectangle. Note that CENTER uses integer
arithmetic, and so, the center may be a pixel off in either direction if
the length of either of the sides of the rectangle is an odd number. We
may define CENTER as follows:

<-(DEFINEQ (center (arectangle)
 (IF (TYPE? RECTANGLE arectangle)
 THEN
 (POINT
 (IQUOTIENT
 (IPLUS (fetch XCOORD of
 (LOWERLEFT arectangle))
 (fetch XCOORD of
 (UPPERRIGHT arectangle)))
 2)
 (IQUOTIENT
 (IPLUS (fetch YCOORD of
 (LOWERLEFT arectangle))
 (fetch YCOORD of
 (UPPERRIGHT arectangle)))
 2)
)
)
))

Graphics

279

Consider the following example:

<-SQ1
(RECTANGLE (100 . 100) 250 . 250)

<-(CENTER SQ1)
(175 . 175)

5.3.3 Rectangle Manipulation Functions

 This section describes several function for manipulating
rectangles that I have created as utility functions.

5.3.3.1 Expanding a Rectangle

 You may expand the dimensions of a rectangle by moving its
upper right corner and lower left corner in the X or Y directions. To
do so, you may use the function EXPAND.RECTANGLE, which
takes the form:

 Function: EXPAND.RECTANGLE
 # Arguments: 3
 Arguments: 1) ARECTANGLE, a rectangle handle
 2) DELTAX, an X-axis increment
 3) DELTAY, a Y-axis increment
 Value: A new rectangle.

 We may define EXPAND.RECTANGLE as follows:

<-(DEFINEQ (expand.rectangle (arectangle deltax deltay)
 (RECTANGLE
 (IDIFFERENCE

 (fetch XCOORD of (LOWERLEFT arectangle))
 deltax)

Graphics

280

 (IDIFFERENCE
 (fetch YCOORD of (LOWERLEFT arectangle))
 deltay)
 (IPLUS
 (fetch XCOORD of (UPPERRIGHT arectangle))
 deltax)
 (IPLUS
 (fetch YCOORD of (UPPERRIGHT arectangle))
 deltay)
)
))
(EXPAND.RECTANGLE)

 Consider the following example:

<-SQ1
(RECTANGLE (100 . 100) 250 . 250)

<-(EXPAND.RECTANGLE SQ1 100 100)
(RECTANGLE (0 . 0) 350 . 350)

5.3.3.2 Finding a Rectangle's Area

 You may compute the area of a rectangle using the function
AREA.OF.RECTANGLE, which takes the form:

 Function: AREA.OF.RECTANGLE
 # Arguments: 1
 Arguments: 1) ARECTANGLE, a rectangle handle
 Value: An integer.

 We may define AREA.OF.RECTANGLE as follows:

<-(DEFINEQ (AREA.OF.RECTANGLE (arectangle)
 (IF (TYPE? arectangle 'RECTANGLE)

Graphics

281

 THEN
 (TIMES (WIDTH arectangle) (HEIGHT arectangle)))
))
(AREA.OF.RECTANGLE)

 Consider the following example:

<-(AREA.OF.RECTANGLE arectangle)
20000

5.4 Closed Polygons

 Interlisp provides two functions for drawing closed curved
polygons, e.g., circles and ellipses. We provide you with the
definitions for drawing two additional types of closed polygons:
triangles and hexagons.

5.4.1 Drawing Circles

 You may draw a circle in a window using the function
DRAWCIRCLE, which takes the form:

 Function: DRAWCIRCLE
 # Arguments: 6
 Arguments: 1) X, the x-coordinate of the center
 2) Y, the y-coordinate of the center
 3) RADIUS, the radius of the circle
 4) BRUSH, a brush handle
 5) DASHING, a dashing specification
 6) DISPLAYSTREAM, a display
 stream handle
 Value: NIL.

 DRAWCIRCLE draws a circle of size RADIUS centered about
the point (X,Y) in the destination bit map of the specified display

Graphics

282

stream. The current position of DISPLAYSTREAM will be the
position (X,Y). Consider the following example:

<-(DRAWCIRCLE 100 100 100 NIL NIL awindow)
NIL

which draws the following figure:

Figure 5-16. DRAWCIRCLE Example

 In this example, the brush default of 1 has been used and no
dashing has been specified.

Graphics

283

5.4.2 Drawing Ellipses

 You may draw an ellipse (a lop-sided circle) using the function
DRAWELLIPSE, which takes the form:

 Function: DRAWELLIPSE
 # Arguments: 8
 Arguments: 1) X, the x-coordinate of the center
 2) Y, the y-coordinate of the center
 3) SEMIMINORRADIUS, the minor
 radius
 4) SEMIMAJORRADIUS, the major
 radius
 5) ORIENTATION, the angle of the
 major axis
 6) BRUSH, a brush handle
 7) DASHING, a dashing specification
 8) DISPLAYSTREAM, a display
 stream handle
 Value: NIL.

 DRAWELLIPSE draws an ellipse about the position (X,Y) in the
destination bit map of the given display stream with a minor radius of
SEMIMINORRADIUS and a major radius of
SEMIMAJORRADIUS. The ellipse is oriented with the major axis
having an angle of ORIENTATION degrees. The orientation is
positive in a counterclockwise direction. The current position of
DISPLAYSTREAM is the position (X,Y).

 Consider the following example which is depicted in Figure 5-
17:

<-(DRAWELLIPSE 100 100 50 100 45 3 NIL awindow)
NIL

Graphics

284

Figure 5-17. DRAWELLIPSE Example

5.5 Filling Objects with Texture

 The previous sections have described functions that allow you to
draw various types of polygons on the screen. The ability to fill those
polygons goes a long way towards enhancing the presentation of
information that is displayed on the screen. Interlisp provides two
functions for filling arbitrary polygons and circles on the screen. You
should also consult DSPFILL for filling arbitrary regions.

5.5.1 Filling Polygons

Graphics

285

 You may fill an arbitrary polygon described by its vertices using
the function FILLPOLYGON, which takes the form:

 Function: FILLPOLYGON
 # Arguments: 3
 Arguments: 1) POINTS, a list of points
 representing the vertices of the polygon
 2) TEXTURE, a texture handle
 3) STREAM, a display stream handle
 Value: NIL.

 FILLPOLYGON fills in the polygon described by POINTS with
TEXTURE. POINTS is a list of positions which determine the vertices
of a closed polygon. The positions occurring in POINTS are assumed
local to STREAM.

 The entries in POINTS may be lists which describe separate
polygons to be filled. Thus, you can fill several polygons with one list
or you can fill a set of polygons which might be nested inside one
another.

 When filling a polygon, consideration must be given to the case
where two polygon sides intersect. FILLPOLYGON uses an "odd" fill
rule which means that intersecting polygons define areas like a
checkerboard which are filled or not filled. Consider the example:

<-(FILLPOLYGON '((125 . 125)
 (150 . 200)
 (175 . 125)
 (125 . 175)
 (175 . 175))
 GRAYSHADE
 WINDOW)
NIL

Graphics

286

produces a display as depicted in Figure 5-18.

Figure 5-18. An Example Using FILLPOLYGON

 If POINTS specifies multiple polygons, the fill rule described
above can be used to place "holes" in filled polygons. Consider the
following example:

<-(FILLPOLYGON '(((110 . 110)
 (150 . 200)
 (190 . 110))
 ((135 . 125)
 (160 . 125)
 (160 . 150)

Graphics

287

 (135 . 150)))
 GRAYSHADE
 WINDOW)
NIL

produces a square hole in a triangular region in WINDOW.

Figure 5-19. Another Example of FILLPOLYGON

 FILLPOLYGON uses the "replace" operation to fill areas with
texture. Any areas not filled are not changed. If there are "holes" in the
filled polygon, they can be used to produce a "windowing" effect.

Graphics

288

5.5.2 Filling a Circle

 You may fill a circle with a texture using the function
FILLCIRCLE, which takes the form:

 Function: FILLCIRCLE
 # Arguments: 5
 Arguments: 1) CENTERX, X-coordinate of center
 2) CENTERY, Y-coordinate of center
 3) RADIUS, radius of circle
 4) TEXTURE, a texture handle
 5) STREAM, a display stream handle
 Value: NIL.

 FILLCIRCLE fills in a circular region about the point
(CENTERX, CENTERY) with the given texture to the specified
radius. Consider the following example which fills a circle with the
checkerboard texture:

<-(FILLCIRCLE 150 150 50 CHECKBRUSH IOWINDOW)
NIL

Graphics

289

Figure 5-20. FILLCIRCLE Example

PROCESS MANAGEMENT

290

6. Process Management

 Multiprocessing (actually, multitasking) is a recent innovation in
Interlisp, although other Lisps (such as FranzLisp) have supported
some type of mechanism either directly or through access to the
operating system mechanisms. Interlisp process management allows
you to initiate multiple Lisp processes which may operate
asynchronously, but which may be synchronized through an
interprocess communication mechanism. Each Interlisp process
executes in its own stack, but all Interlisp processes share the same
global address space provided by the Interlisp virtual memory.

 Interlisp assumes a benign environment, i.e., all processes
cooperate together. Thus, process switching occurs on a voluntary
basis, rather than being forced by the underlying virtual machine.
There is no preemption mechanism nor is there a provision for
guaranteeing service. A process may run for as long as it needs to.

 The process mechanism is an integral component of the Interlisp
programming environment. Most of the standard system facilities
(such as network operations) require that the process mechanism be
active. I caution you against disabling it unless an exceptional
condition occurs (such as catastrophic failure of an applications
program where essential data must be saved).

CAVEAT: This facility was developed for the Xerox D Machines. It

has not yet been evaluated to run on the modern machines to which

Medley Interlisp has been ported.

6.1 Process Concepts

 A process is a locus of control. Each process is defined by a
process handle, which takes the form:

PROCESS MANAGEMENT

291

{PROCESS}#<address>

where <address> is a memory location.

6.1.1 The Structure of a Process

 A process is described by a process object, which is a data
structure maintained in memory by Interlisp. The process object has
the structure presented in Table 6-1.

Table 6-1. Process Structure

Field Type Description

PROCRESTARTFORM POINTER An expression that is
executed when a process
restarted.

PROCDRIBBLEOFD POINTER A flag

PROCTTYEXITFN POINTER A function applied to process
name when it ceases to be the
TTY process.

PROCTTYENTRYFN POINTER A function applied to process
name when it becomes the
TTY process.

PROCEVAPPLYRESULT POINTER Storage for
PROCESS.EVAL and
 PROCESS.APPLY
when WAITFORRESULT is
true.

PROCOWNEDLOCKS POINTER A pointer to the first monitor
lock owned by the process.

PROCBEFOREEXIT POINTER A function invoked before
the process terminates; may
be used to set up return
values from the process.

PROCESS MANAGEMENT

292

PROCAFTEREXIT POINTER A function invoked when
restarting Interlisp after a
SYSOUT, etc.

PROCEVENTLINK POINTER A pointer to the event for the
process.

PROCUSERDATA POINTER Storage for user properties
for the process.

PROCREMOTEINFO POINTER A flag used in network
communications.

PROCTYPEAHEAD POINTER Address of buffer which
contains typeahead for this
process.

PROCINFOHOOK POINTER Optional user function that
displays information about
the process.

PROCRESETVARLIST POINTER Bindings for
RESETVARLIST in the
process.

PROCMAILBOX POINTER A queue of messages.
PROCFINISHEVENT POINTER An optional event to be

notified when the process
finishes.

PROCRESULT POINTER The value to be returned if
the process finishes
normally.

PROCFINISHED POINTER Value indicating how the
process finished: NORMAL,
DELETED, or ERROR.

PROCWINDOW POINTER The window handle of a
window associated with this
process, if any.

RESTARTABLE POINTER If T, autorestart on error;
HARDRESET means restart
only on a hard reset.

PROCFORM POINTER The form to EVAL to initiate
the process.

PROCEVENTORLOCK POINTER An event or monitor lock that
the process is waiting for.

PROCESS MANAGEMENT

293

WAKEREASON POINTER The reason the process is
being run.

PROCTIMERBOX POINTER A scratch box to use for
PROCWAKEUPTIMER
when the user does not
provide one.

PROCTIMERLINK POINTER Links the process to the
PROCWAKEUPTIMER POINTER The time this process last

went to sleep.
PROCNEVERSTARTED FLAG T, if the process has never

been started.
PROCSYSTEMP FLAG A flag.
PROCDELETED FLAG A flag indicating the process

has been deleted; cleanup
occurs later.

PROCBEINGDELETED FLAG T, if the process was deleted
but hasn't yet been removed
from \PROCESSES.

PROCTIMERSET FLAG T, if
PROCWAKEUPTIMER has
an interesting value.

NEXTPROCHANDLE POINTER Pointer to the next process
handle.

PROCQUEUE POINTER Pointer to the queue of
processes of the same
priority.

PROCPRIORITY BYTE Priority level of the process;
currently 0-4.

PROCNAME POINTER The name of the process.
PROCSTATUS BYTE The process status.
PROCFX WORD The stack pointer for this

process when it is asleep.
PROCFX0 WORD Is \STACKHI to make it look

like a STACKP.

 This data structure may be examined by the Inspector as follows:

PROCESS MANAGEMENT

294

<-(INSPECT (DF PRINT.FILE))

which yields the following structure (with some fields filled in
explicitly for DEdit).

PROCRESTARTFORM NIL
PROCDRIBBLEOFD NIL
PROCTTYEXITFN DEDITTABSOFF
PROCTTYENTRYFN DEDITTABSON
PROCEAPPLYRESULT NIL
PROCOWNEDLOCKS NIL
PROCBEFOREEXIT NIL
PROCAFTEREXIT NIL
PROCEVENTLINK {PROCESS}#65,24700
PROCUSERDATA (TABACTION (IGNORE .

IGNORE))
PROCREMOTEINFO NIL
PROCTYPEAHEAD NIL
PROCINFOHOOK NIL
PROCRESETVARLIST ((\DEDITALLOWSELS)
 ((\DEDITUSER NIL))
 ((SETCURSOR

({BITMAP}#57,134520
 0 . 15)) NIL)
 ((UNDEDITW

({WINDOW}#64,152064))
NIL)

 (\DEDITSELECTIONS)
 ((EDITF2 PRINT.FILE NIL FNS

NIL
 (LAMBDA (FILE)
 (PROG (OLD-RPARS)
 (SETQ OLD-COLUMN

FIRSTCOL)
 (SETQ OLD-RPARS #RPARS)

PROCESS MANAGEMENT

295

 (SETQ #RPARS NIL)
 (SETQ 4045STREAM
 (OPENIMAGESTREAM ...))
 (LINELENGTH 70 4045STREAM)
 (OPENSTREAM FILE 'INPUT)
 (EVAL (LIST 'SEE* FILE)

4045STREAM)
 (CLOSEF 4045STREAM)
 (SETQ #RPARS OLD-RPARS))))
 NIL))
PROCMAILBOX NIL
PROCFINISHEVENT NIL
PROCRESULT NIL
PROCFINISHED NIL
PROCWINDOW NIL
RESTARTABLE NIL
PROCFORM (EDITDEF (QUOTE PRINT.FILE

(QUOTE FNS))
PROCEVENTORLOCK {EVENT}#71,17710
WAKEREASON NIL
PROCTIMERBOX 0
PROCTIMERLINK NIL
PROCWAKEUPTIMER NIL
PROCNEVERSTARTED NIL
PROCSYSTEMP NIL
PROCDELETED NIL
PROCBEINGDELETED NIL
PROCTIMERSET NIL
NEXTPROCHANDLE NIL
PROCQUEUE {PROCESSQUEUE}#71,20770
PROCPRIORITY 2
PROCNAME EDITDEF
PROCSTATUS 0
PROCFX 27224
PROCFX0 1

PROCESS MANAGEMENT

296

 Each process may also be described by certain properties which
affect its behavior.

6.1.2 The TTY Process

 The TTY Process is a global role that is created when Interlisp is
initialized. It is assumed to be the only process which will receive
input from the keyboard. For any other process to receive input, it must
explicitly assume the role of the TTY Process through a function call.
Initially, this role is assigned to the process associated with the
Interlisp Executive Window which processes top-level expressions
typed by the user.

 When the TTY Process role is switched to another process, any
input that was typed ahead is saved in the current processes' object.
Thus, characters typed at the keyboard are always sent to the process
which assumed the role of the TTY Process at the time the characters
were typed.

 A process may either assign the TTY Process role to itself or to
another process. Typically, the latter case occurs when an executive
process within your program determines which process should
perform the next step of the computation or it is expecting a certain
type of input to be entered by the user.

 From the user's viewpoint, you want to designate which process
will receive input by clicking the mouse in the window associated with
the process. Thus, any process which wants to receive keyboard input
should place its process handle in the PROCESS property of its
window(s). When (TTYDISPLAYSTREAM) switches to a new
window, it automatically performs this action.

6.1.2.1 Switching the TTY Process Role

PROCESS MANAGEMENT

297

 Any process can assume the role of the TTY Process by executing
the function TTY.PROCESS, which takes the form:

 Function: TTY.PROCESS
 # Arguments: 1
 Arguments: 1) PROC, a process handle
 Value: The handle of the current process.

 If PROC is NIL, the current process assumes the role of the TTY
Process. The handle of the current TTY Process is returned as the
value. Assume the TTY process currently resides in the Interlisp
Executive Window.

<-(TTY.PROCESS)
{PROCESS}#71,22400

 Typically, when the handle of a process is returned, you will cache
it in a variable or property so that you can reinstate that process at a
later time.

 If PROC is non-NIL, that process is assigned the role of the TTY
Process. This permits one process to assume control of the
computation, but allows another to receive and process input
designated for the program.

 Let MYPROCESS contain the process handle of a TEdit process.
Consider the following example:

<-MYPROCESS
{PROCESS}#71,110500

<-(TTY.PROCESS MYPROCESS)
{PROCESS}#71,22400

PROCESS MANAGEMENT

298

 When PROC has the value T, the TTY Process role is assigned to
the Executive Process, which handles top-level interactions with the
user.

Notifying a Process of its TTY Process Role

 Since a process can be assigned the TTY Process role by another
process, there are cases when the process wants to be notified that it
has been asigned this role. The process property TTYENTRYFN
should contain a function which performs the necessary housekeeping
chores upon assumption of the TTY Process role.

Giving up the TTY Process Role

 When a process gives up the TTY Process role or another process
seizes it, the process losing that role may want to be notified. The
process property TTYEXITFN should contain a function which
performs the necessary housekeeping chores upon losing or
surrendering the TTY Process role.

TTY Process Role Assignment Procedure

In summary, the algorithm for TTY.PROCESS operates as follows:
1. The former process having the TTY Process role has the function

assigned to its TTYEXITFN process property executed with two
arguments: (OLDTTYPROCESS NEWTTYPROCESS).

2. The new process is assigned the TTY Process role.
3. The new process having the TTY Process role has the function

associated with its TTYENTRYFN process property executed.

6.1.2.2 Testing for the TTY Process Role

 You may test if a process has the TTY Process role assigned to it
using TTY.PROCESSP, which takes the form:

PROCESS MANAGEMENT

299

 Function: TTY.PROCESSP
 # Arguments: 1
 Arguments: 1) PROC, a process handle

 Value: T or NIL.

 If PROC is NIL, TTY.PROCESSP always tests the current
process. Thus, the following expression:

<-(TTY.PROCESSP)
T

<-(TTY.PROCESSP MYPROCESS)
NIL

is true if the current process has the role of the TTY Process assigned
to it. Of course, its always true at the top level.

6.1.2.3 Waiting for the TTY Process

 You may wait for a process to assume the TTY Process role by
executing the function WAIT.FOR.TTY, which takes the form:

 Function: WAIT.FOR.TTY
 # Arguments: 2
 Arguments: 1) MSECS, the number of milliseconds
 to wait
 2) NEEDWINDOW, a flag
 Value: T

 WAIT.FOR.TTY efficiently waits for the current process to
assume the role of the TTY Process. MSECS is the number of
milliseconds to wait before timing out.

PROCESS MANAGEMENT

300

 If WAIT.FOR.TTY times out, it returns NIL. However, if the
current process assumes the role of the TTY Process within MSECS,
WAIT.FOR.TTY returns T.

 If MSECS is NIL, WAIT.FOR.TTY does not timeout; the current
process waits (possibly) forever.

 If NEEDWINDOW is non-NIL, WAIT.FOR.TTY opens a
window for the current process if one is not already open (e.g.,
PROCWINDOW is NIL). This window is opened using TTYIN.

 WAIT.FOR.TTY will spawn a new mouse process (see Section
6.1.4, II) if it is called under the mouse process (see
SPAWN.MOUSE).

 WAIT.FOR.TTY is usually used internally by Interlisp processes
that need to read from the terminal.

 WAIT.FOR.TTY is an essential function since the keyboard is a
scarce resource. Access to it must be controlled among the competing
processes when a user can type commands to several different
processes as opposed to typing to one user interface process which
then distributes the data to the requesting processes.

6.1.2.4 Clicking the Mouse in a Window

 Each window has the property WINDOWENTRYFN, which
controls whether or not the TTY Process role is assigned to the process
associated with the window.

 The mouse handler, before invoking the function assigned as the
value of the window property BUTTONEVENTFN, determines
whether a mouse button has been pressed in a window which is
associated with a process. If the process is not the TTY Process (e.g.,
has not assumed that role), it invokes the window's

PROCESS MANAGEMENT

301

WINDOWENTRYFN to determine what to do. The default value of
the WINDOWENTRYFN property for all windows is the function
GIVE.TTY.PROCESS.

 The WINDOWENTRYFN may establish the mouse environment
before processing the button event. For example, it can move the
cursor to a specific object or display a menu that the user must choose
from.

6.1.2.5 Giving the TTY Process Role to a Window Process

 You may give the TTY Process role to a process associated with
a window by executing the function GIVE.TTY.PROCESS, which
takes the form:

 Function: GIVE.TTY.PROCESS
 # Arguments: 1
 Arguments: 1) WINDOW, a window handle
 Value: The window handle.

 If WINDOW has a non-NIL value for the PROCESS property,
GIVE.TTY.PROCESS executes the following expression:

(TTY.PROCESS (WINDOWPROP WINDOW 'PROCESS))

and then invokes the function associated with the WINDOW's
BUTTONEVENTFN property. Alternatively, if the right button was
pressed, it will execute the function associated with the
RIGHTBUTTONFN property.

Ownership of Windows

 If you follow a hierarchical decomposition methodology in the
construction of your program, most processes will own a disjoint set
of windows. In some cases, two or more process may own the same

PROCESS MANAGEMENT

302

set of windows. Unless the processes observe a strict cooperative
protocol, they may confuse each other with respect to the use of the
windows and the assignment of the TTY Process role. It is your
responibility to provide mechanisms to avoid confusion (possibly
using events or monitors.

 A global window, like the Prompt Window, is used both by user
processes and system processes. You should not have your processes
reading from the Prompt Window.

 Thus, each process is able to print to its own primary output or
terminal and read from its own primary input or the terminal without
interfering with other processes.

 Each process is initialized with its primary and terminal input and
output streams set to a default. When the process attempts to read or
write to the terminal, a TTY window will be automatically created for
the process. The region where the TTY window will be created is
given by the system variable DEFAULTTTYREGION.

 A process may call TTYDISPLAYSTREAM at any time to
acquire a TTY window explicitly. TTYDISPLAYSTREAM sets both
the terminal and primary input and output streams to the chosen
window.

6.1.2.6 Determining if a Process has a TTY Window

 A process may determine if it has a TTY window using the
function HASTTYWINDOWP, which takes the form:

 Function: HASTTYWINDOWP
 # Arguments: 1
 Arguments: 1) PROCESS, a process
 handle

PROCESS MANAGEMENT

303

 Value: T, if the process has a
TTY
 window.

 HASTTYWINDOWP determines if the given process has a TTY
window. If so, it returns T; otherwise, NIL. Consider the following
example:

<-(HASTTYWINDOWP)
T

because the Exec window certainly has the TTY window when I can
type into it.

6.1.3 Handling the Mouse

 The window mouse handler runs as an independent process. When
BUTTONEVENTFN of a window is being executed as a result of
clicking a mouse button in a window, the mouse handler is not
available to perform other functions or window operations. This will
cause two problems:

1. Long computations initiated by the BUTTONEVENTFN
deprive you of the use of the mouse for concurrent activities.

2. Functions executed as parts of BUTTONEVENTFNs cannot
rely on other BUTTONEVENTFNs running concurrently;
thus, some function sequences will run differently when
executed under the control of the mouse process.

 Two functions allow you additional control over mouse
processes as described in the following sections.

6.1.3.1 Spawning Mouse Processes

 You may spawn additional mouse processes using the function
SPAWN.MOUSE, which takes the form:

PROCESS MANAGEMENT

304

 Function: SPAWN.MOUSE
 # Arguments: 0
 Arguments: N/A
 Value: T

 SPAWN.MOUSE creates another mouse process which allows
the mouse to be used concurrently by multiple mouse processes.
Consider the following example:

<-(SPAWN.MOUSE)
T

 This function is largely intended for use inside a process where
you want to allow independent mouse events in different windows.
Each time you spawn a mouse process, the mouse process is attached
to a window. The following function handles the button events in that
window.

6.1.3.2 Allowing Mouse Button Events

 When you enter a BUTTONEVENTFN as a result, scrolling is
specified as the value of the window property SCROLLFN. If this
value is NIL, the window is not scrollable. The function assigned to
this property takes four arguments:

1. The window being scrolled.
2. The distance to scroll in the horizontal direction.
3. The distance to scroll in the vertical direction.
4. A flag which is T if a mouse button is held down while in the

scrolling region.

 For arguments (2) and (3), a positive number indicates either right
or up, while a negative number indicates either left worrying about
"flooding" the system with numerous mouse processes. The window

PROCESS MANAGEMENT

305

mouse handler arranges to terminate itself if it returns from a
BUTTONEVENTFN and detects another mouse process is operating.

6.1.4 Handling Interrupts

 When you "strike" a keyboard interrupt character, any process
could be running. A decision must be made about how to handle the
interrupt. Most interrupts will be handled by the current TTY Process
(e.g., the process having the TTY Process role). Certain interrupts are
handled in a special fashion as described in the following paragrpahs.

6.1.4.1 Handling Reset/Error Interrupts

 Two interrupts result in the termination of the computation:
RESET (initially, <CTRL-D> and ERROR (initially, <CTRL-E>).

 These interrupts are handled in the mouse process, if the mouse is
not in an idle state (such as reshaping or movRng a window).
Otherwise, they are handled by the TTY Process.

 When these interrupts are taken in the mouse process, they abort
the current mouse-invoked window operation. Thus, if you have
selected a window operation that requires a "long" computation (such
as searching a directory in the FileBrowser), you may abort that
computation using <CTRL-E>.

 The RESET interrupt causes a process to be unwound to the top
level of its stack. If the process is designated as restartable (e.g., its
RESTARTABLE process property has the value T), it is restarted;
otherwise, the process is killed.

6.1.4.2 Handling Help Interrupts

 The HELP interrupt (initially, <CTRL-G>) causes a menu of
processes to be displayed to you. Using the mouse, you select the

PROCESS MANAGEMENT

306

process in which you want the interrupt to occur. The current TTY
Process is designated by a * next to its name.

Figure 6.1 Depiction of HELP Interrupt Menu

The menu includes an entry "Spawn Mouse" which allows you to
create a new mouse process if the current mouse process is tied up
executing some processes' BUTTONEVENTFN. When this entry is
selected, a new mouse process is created, but no break occurs.

6.1.4.3 Handling Breaks

 The BREAK interrupt (initially, <CTRL-B>) causes a Break
Window to be opened.

6.1.4.4 Handling Rubout

 The RUBOUT interrupt (initially, DELETE) clears the typeahead
entries in all processes. That is, its the value of PROCTYPEAHEAD
in each processes' object to NIL.

6.1.4.5 Handling Stack and Storage Overflow

PROCESS MANAGEMENT

307

 STACK OVERFLOW and STORAGE FULL interrupts are taken
by the process in which the condition occurred since it is likely that
this is the process which causes the condition. However, it is not
necessaryily so, since some other process may have "runaway" and
consumed all of the resources before passing control to the process in
which the interrupt occurred.

6.1.5 Enabling the Process World

 You may enable and disable the process world using
PROCESSWORLD, which takes the form:

 Function: PROCESSWORLD
 # Arguments: 1
 Arguments: 1) FLG, a flag.
 Value: T or nothing.

 When you intialize Interlisp from the standard sysout, the process
world is enabled. You may disable it by:

<-(PROCESSWORLD 'OFF)
<nothing is returned here>

which kills all processes and turns process management off. Note that
PROCESSWORLD does not return when you disable process
management. You may enable process management after it has been
turned off via:

<-(PROCESSWORLD 'ON)
T

 If processes are already enabled, PROCESSWORD returns the
following message:

 (Processes are already on)

PROCESS MANAGEMENT

308

Note: PROCESSWORLD is only intended to be called from the top
level. When it is invoked, it constructs new processes with new stack
space. Previous callers of PROCESSWORLD will be left in an
inaccessible part of the stack because there is no reference back to it.

6.1.6 The Process Status Window

 You may display a Process Status Window by selecting the menu
item PSW from the background menu. Alternatively, you may call the
function PROCESS.STATUS.WINDOW to display the Process
Status Window.

 The Process Status Window consist of two menus as depicted in
Figure 6.2. The top menu lists all processes known to Interlisp while
the bottom menu provides a list of commands that operate upon a
selected process.

TO BE DETERMINED
[fg6.2>The Process Status Window]fg

6.1.6.1 The List of Processes

 The top menu of the Process Status Window contains a list of the
processes currently known by Interlisp. This list is updated whenever
a new process is created or an existing process is destroyed.

6.1.6.2 Process Status Window Commands

 The bottom menu of the Process Status Window contains a list of
commands which you may select to operate upon processes selected
from the top menu. The commands are presented in Table 6-2.

C
E

PROCESS MANAGEMENT

309

S
S
W
O
R
L
D
'
O
N
)

Table 6-2. Process Status Window Commands

Com

mand

Action

BT Displays a backtrace of the selected process.
BTV Displays a backtrace with variables of the

selected process.
BTV* Displays a backtrace with argument names

of the selected process.
BTV! Displays a backtrace with argument names

and values of the selected process.
WHO? Changes the selection to the TTY process, e.g.,

the process currently in control of the keyboard.
KBD<- Associates the keyboard with the selected process, i.e., it makes the selected process by the TTY process.
INFO Invokes the function associated with the

processes' INFOHOOK property, if one exists; otherwise, nothing happens.
BREAK Causes a break to occur in the current function executing in the process.
KILL Deletes the selected process.
RESTART Restarts the selected process, if it is restartable.
WAKE Wakes the selected process after prompting

you to supply a value with which to wake
the process.

SUSPEND Suspends the selected process, i.e., causes
the process to be blocked indefinitely until
it is explicitly awoken.

PROCESS MANAGEMENT

310

6.1.6.3 Opening the Process Status Window

 If the Process Status Window is not open, you may open it
explicitly from within your program by calling
PROCESS.STATUS.WINDOW, which takes the form:

 Function: PROCESS.STATUS.WINDOW
 # Arguments: 1
 Arguments: 1) WHERE, a position
 Value: The window handle for the Process
 Status Window.

 PROCESS.STATUS.WINDOW displays a Process Status
Window if one is not already open. If a Process Status Window is
open, it is merely refreshed.

 WHERE is a position on the screen where the Process Status
Window will be displayed. Otherwise, you will be prompted for a
location at which to place the Process Status Window.

6.2 Creating and Destroying Processes

 You may dynamically create and destroy processes in Interlisp.
Care should be exercised in destroying processes because all objects
used by the process may not be eliminated. Thus, you may start to lose
portions of virtual memory due to objects which have not been
garbage collected.

6.2.1 Creating a Process

 You may create a new process that evaluates an expression using
ADD.PROCESS, which takes the form:

PROCESS MANAGEMENT

311

 Function: ADD.PROCESS
 # Arguments: 1-N
 Arguments: 1) FORM, an expression to be evaluated
 2) PROP, a process property
 3) VALUE, a process property value
 4-N) PROP/VALUE pairs
 Value: A process handle.

 ADD.PROCESS is a nospread function. It creates a new process
which evaluates FORM and returns the process handle.

 The new process is created with a new stack environment. Thus,
it does not have access to the stack environment of the process which
created it. All information to be passed to the new process must be
passed as arguments in FORM. Alternatively, FORM invokes
functions which know about global variables that permit sharing
between the new process and its parent.

 The new process runs until FORM returns either via executing
PROCESS.RETURN or exiting a function, or the process is explicitly
deleted by another process. A process may be terminated if an error
occurs which is not trapped by the user.

 The PROP/VALUE pairs allow you to set properties of the
process. Each PROP/VALUE pair is given to PROCESSPROP to
store on the property list of the process handle.

 Two process properties are particularly relevant to
ADD.PROCESS:

1. NAME: Its value should be a literal atom which will be the
name of the process. If NIL, the name is taken from FORM.

2. SUSPEND:If its value is non-NIL, the new process is
created but immediately suspended. The process will not be
run until it is awakened by a call to WAKE.PROCESS.

PROCESS MANAGEMENT

312

 ADD.PROCESS will attempt to make the name of the process
unique by packing it with a number. The name of a process is used to
manipulate the process when you type in expressions at the top-level.
That is, the name is given to various process world functions or it
appears in menus of processes.

 Caution should be exercised because the relationship between
process names and process handles is sometimes tenuous. Process
handles are unique and are handled properly by Interlisp.

 Consider the following examples:

<-(SETQ XP (ADD.PROCESS '(PROCESS.DEMO)))
{PROCESS}#77,110200

where we define PROCESS DEMO as:

(DEFINEQ (PROCESS.DEMO NIL
 (PROG (PW)
 (SPAWN.MOUSE)
 (SETQ PW (GENSYM 'PW))
 (SET PW (CREATEW NIL "PROCESS
DEMO WINDOW"))
 (for X from 1 by 1 to 10000
 do
 (SETQ A (IPLUS A 1))
 (PRIN1 A PW)
 (TERPRI PW)
 (DISMISS 1000)
 (if (GREATERP A 10)
 then
 (PROGN
 (CLEARW PW)
 (SETQ A 0)

PROCESS MANAGEMENT

313

 (PRIN1 "STARTING COUNT
ANEW"
PW)
 (TERPRI PW)
 (AWAIT.EVENT EV1))))
 (PRIN1 "ALL DONE NOW" PW)
 (TERPRI PW)
 (PROCESS.RETURN (APPEND (LIST "MY
PROCESS ID +")
 (THIS.PROCESS))
)))
(PROCESS.DEMO)

 This is a very simple process declaration. The idea is to
demonstrate the use of processes in the following examples. When
the process is created, the window appears as depicted in Figure 6.2
(after running for a short time).

Figure 6.2 PROCESS DEMO WINDOW

PROCESS MANAGEMENT

314

6.2.2 Killing a Process

 You may kill a process by executing DEL.PROCESS, which
takes the form:

 Function: DEL.PROCESS
 # Arguments: 1
 Arguments: 1) PROC, a process
handle
 Value: T

 You may delete (i.e., kill) a process which is currently running or
suspended via DEL.PROCESS. PROC may be a process handle or its
name. Consider the example:

<-(SETQ XP (ADD.PROCESS '(PROCESS.DEMO)))
{PROCESS}#56,56100

<-(DEL.PROCESS XP)
T

After the process is killed, the Process Status Window shades the name
of the process to indicate it has been killed (see Figure 6.3).

TBD
[fg6.3>Process Status Window after DEL.PROCESS]fg

If PROC is the currently running process, DEL.PROCESS does not
return (for where would it turn to?). Executing DEL.PROCESS at the
top level can be potentially fatal to your Interlisp environment.

6.3 Process Properties

PROCESS MANAGEMENT

315

 A process may be described by a number of process properties.
We have already mentioned two of these - NAME and SUSPEND - in
the discussion of ADD.PROCESS above.

6.3.1 Getting and Setting Process Properties

 You may get or set process properties using the function
PROCESSPROP, which takes the form:

 Function: PROCESSPROP
 # Arguments 3
 Arguments: 1) PROC, a process handle or name
 2) PROP, a property name
 3) NEWVALUE, a value for the
 property
 Value: The value of the processes' property.

 PROCESSPROP is a nospread function. PROCESSPROP gets or
sets the values of properties that are stored on the process handle's
property list. It returns the following value according to the
functions performed:

• The current value of the property if NEWVALUE is not
supplied, or

• The old value of the property if NEWVALUE is supplied,
including if it is NIL.

 Thus, what distinguishes retrieval from storage is whether or not
NEWVALUE is supplied in the argument list. Consider the following
examples:

<-MYPROCESS
{PROCESS}#71,22400

<-(PROCESSPROP MYPROCESS 'NAME)
TEdit

PROCESS MANAGEMENT

316

<-(PROCESSPROP MYPROCESS 'WINDOW)
{WINDOW}#55,141404

Certain properties have special meanings for processes. These are
described in Sections 6.3.2 through 6.3.9. All other properties are
ignored by the process management functions.

6.3.2 Process Name

 As mentioned in Section 6.2.1, you may assign a name to a process
which allows you to identify it to process management functions. The
name, which must be a literal atom, is stored under the property
NAME on the process handle. If the name is not unique,
ADD.PROCESS makes the name unique by packing it with a number.

 In general, I recommend that you select names which are
meaningful because the names of processes appear in different menus
throughout the system.

6.3.3 The Process Body

 The original expression used to initialize the process is stored on
the process handle under the property FORM. Consider the following
example:

<-(SETQ XP (ADD.PROCESS '(PROCESS.DEMO)))
{PROCESS}#56,56100

<-(PROCESSPROP XP 'FORM)
(PROCESS.DEMO)

Note that the form for the Exec Window is
(\PROC.REPEATEDLYEVALQT) which you can determine by
inspecting the stack after breaking in the Exec Window.

PROCESS MANAGEMENT

317

6.3.4 The Restart Flag

 A process may be deleted if an error occurs which causes its body
to be exited during execution. The property RESTARTABLE
determines the disposition of the process object. It may take the values
presented in Table 6-3.

Table 6-3. RESTARTABLE Values

Value Meaning

NIL or NO If an untrapped error, a CTRL-E, or a CTRL-D
occurs, the process body is exited and the process is
deleted.

T or YES The process will be automatically restarted when an
error occurs or CTRL-D is pressed. Most system
processes, such as the mouse process, have this is
as the default value.

HARDRESET The process will be deleted if an error occurs whcih
causes its body to be exited, but is restarted on a
hard reset (such as CTRL-D).

 The preferred setting for persistent processes is HARDRESET
when errors are largely unexpected, because the error may simply re-
occur when the process is restarted.

 Needless to say, caution should be exercised in determining when
processes should be restarted automatically, particularly those which
write to external files.

6.3.5 A Restart Form

 When a process is restarted, it will typically re-execute the original
form which is stored as the value of FORM. However, automatic
restart may occur in an uncertain state where the conditions expected

PROCESS MANAGEMENT

318

by the original form are no longer valid. You may specify an
alternative form to be executed upon restart as the value of the
property RESTARTFORM.

6.3.6 Processing Before an Exit

 You may haveprocesses running when you call LOGOUT. Such
an event could leave you sysout in an uncertain state, especially if
certain operations are time-dependent. You may specify processing to
be performed prior to exiting as the value of the property
BEFOREEXIT.

 If its value is DON'T, the process will not be interrupted by the
LOGOUT procedure. If LOGOUT is attempted before the process
finishes, a message will appear which informs you that Medley
Interlisp is waiting for the process to finish before proceeding with the
logout.

6.3.7 Processing After an Exit

 After a system exit, you may specify processing for a process by
assigning a value to the property AFTEREXIT. Values which it may
take are presented in Table 6-4.

Table 6-4. AFTEREXIT Values

Value Meaning

DELETE The process is deleted.
SUSPEND The process is suspended and not run until

explicitly awoken.
An event The process is suspended waiting for an event to

occur.

6.3.8 An Information Hook

PROCESS MANAGEMENT

319

 You may want to query a process about its status using the INFO
command that appears in the Process Status Window. The value of
INFOHOOK is a function which executes within the stack
environment of the process. Thus, it can provide additional
information about the process.

6.3.9 Handling the TTY Display Stream

 As mentioned in Section 6.1 above, a process may assume the role
of the TTY display stream process. Two properties, TTYENTRYFN
and TTYEXITFN, can have as their values functions which are
invoked whenever the current process assumes the role of the TTY
display stream or ceases to have that role.

6.4 Process Management Functions

 Medley Interlisp provides a number of functions for managing the
process environment. When coupled with the event management
functions and the monitor locking functions, Interlisp provides a
complete, albeit primitive, process control environment. But, this
environment gives you the ability to build sophisticated process
control environments that suit your applications.

6.4.1 Testing for an Active Process

 You may test if a given process is an active process (e.g., neither
waiting nor suspended) using the function PROCESSP, which takes
the form:

 Function PROCESSP
 # Arguments: 1
 Arguments: 1) PROC, a process handle
 Value: T.

PROCESS MANAGEMENT

320

 PROCESSP determines whether the given process has finished
executing or not. Consider the following example:

<-MYPROCESS
{PROCESS}#77,110100

<-(PROCESSP MYPROCESS]
T

which verifies that MYPROCESS is a process handle.

6.4.2 Testing for a Deleted Process

 You may test whether a process handle is that of a deleted process
using the function RELPROCESSP, which takes the form:

 Function: RELPROCESSP
 # Arguments: 1
 Arguments: 1) PROCHANDLE, a process handle
 Value: T, if the handle is of a deleted process.

Consider the following examples:

<-(SETQ XP (ADD.PROCESS '(PROCESS.DEMO)))
{PROCESS}$56,56600

<-(DEL.PROCESS XP)
T

<-(PROCESS.FINISHEDP XP)
DELETED

<-(REPROCESSP XP)
T

PROCESS MANAGEMENT

321

6.4.3 Testing for a Finished Process

 You may test whether or not a process has completed execution
using the function PROCESS.FINISHEDP, which takes the form:

 Function: PROCESS.FINISHEDP
 # Arguments 1
 Argument: 1) PROCESS, a process handle

Value: An indication of the termination
condition if the process has
 completed; otherwise, NIL.

 PROCESS.FINISHEDP returns either of the atoms NORMAL or
ERROR to indicate how a process terminated, if, indeed, it has
terminated. It retyurns the atom DELETED if the process has been
killed either from the menu in the Process Status Window or through
invocation of DEL.PROCESS. Consider the following example:

<-(SETQ XP (ADD.PROCESS '(PROCESS.DEMO)))
{PROCESS}$56,56600

<-(DEL.PROCESS XP)
T

<-(PROCESS.FINISHEDP XP)
DELETED

 Now, here is an example where the process completes normally:

<-(SETQ XP (ADD.PROCESS '(for X from 1 to 1000 do (SETQ A
X))))
{PROCESS}#77,110500

<-(PROCESS.FINISHEDP XP)
NORMAL

PROCESS MANAGEMENT

322

6.4.4 Finding a Process Handle

 Within a process you may need to determine the process handle
of another process for any number of reasons: to send it a message, to
delete it or restart it, or just to retrieve information about it. Several
functions have been provided to assist you in finding a processes'
handle.

6.4.4.1 Finding the Current Processes' Handle

 You may find the handle of the currently running process using
the function THIS.PROCESS, which takes the form:

 Function: THIS.PROCESS
 # Arguments: 0
 Arguments: N/A
 Value: The process handle of the current
 process.

 THIS.PROCESS returns the handle of the current process.
Consider the following example:

<-(THIS.PROCESS)
{PROCESS}#71,22400

which happens to be the process handle of the Exec process.

 Note that the currently running process may have no information
concerning its handle unless that information was passed to it after it
was initalized and execution began.

 If the Process World is disabled, THIS.PROCESS returns NIL
(e.g., it acts like a no-operation).

PROCESS MANAGEMENT

323

6.4.4.2 Finding Any Processes' Handle

 You may determine the process handle of a process using the
function FIND.PROCESS, which takes the form:

 Function: FIND.PROCESS
 # Arguments: 2
 Arguments: 1) PROC, a process handle or name
 2) ERRORFLG, an error flag
 Value: A process handle.

 FIND.PROCESS returns a process handle if PROC is a process
handle or is a process name. Of course, the latter case is the most
useful since many processes will initially know of other processes by
their names. Consider the following examples:

<-(FIND.PROCESS 'MOUSE)
{PROCESS}#56,56000

<-(FIND.PROCESS 'BACKGROUND)
{PROCESS}#71,22600

 ERRORFLG determines how FIND.PROCESS responds if PROC
does not name an active process. If T, is causes an error to be
generated.

6.4.5 Restarting a Process

 You may force a process to restart using the function
RESTART.PROCESS, which takes the form:

 Function: RESTART.PROCESS
 # Arguments: 1
 Arguments: 1) PROC, a process handle
 Value: The process handle.

PROCESS MANAGEMENT

324

 RESTART.PROCESS unwinds the given process to its top level
and reevaluate its form. The effect is to delete the process (as if
DEL.PROCESS were called) and then add a new process (as if
ADD.PROCESS were called).

6.4.6 Returning a Value from a Process

 Interlisp allows you to retrieve the result from running a process
in two ways: either as a function call or as an independent coroutine.

6.4.6.1 Returning a Value

 A process may return a value which is the result of its execution.
It does so by invoking the function PROCESS.RETURN, which
takes the form:

 Function: PROCESS.RETURN
 # Arguments: 1
 Argument: 1) VALUE, the value to be returned
 Value: The value given above.

 When a process is created by ADD.PROCESS, an implicit call to
PROCESS.RETURN is wrapped around the form to be evaluated.
Thus, a process normally finishes by simply returning, e.g., by
executing the last statement of its form.

 PROCESS.RETURN terminates the current process and explicitly
returns the value specified as the argument. It is provided for causing
earlier termination of a process such as the occurrence of an error in
the computation.

6.4.6.2 Obtaining a Processes' Result

PROCESS MANAGEMENT

325

 A process may return a value resulting from its execution as if it
were called like a function. You may obtain the result returned by a
given process using the function PROCESS.RESULT, which takes the
form:

 Function: PROCESS.RESULT
 # Arguments: 2
 Arguments: 1) PROC, a process handle
 2) WAITFORRESULT, a flag
 Value: The result from the process;otherwise,
 NIL.

 PROCESS.RESULT returns the value returned from PROC if it
has terminated. This value is returned either via PROCESS.RETURN
or from the ADD.PROCESS expression.

 If the process aborted its execution, i.e., returned an error, the
value returned is NIL.

 Note that PROC must be a process handle, not a process name.
This is because the association between a process name and a process
handle is dissolved when a process terminates execution. The process
handle may continue to exist if there are pointers to it, but it will
eventually be garbage-collected.

 WAITFORRESULT determines whether or not the caller waits
for the result. When PROCESS.RESULT is invoked, the target
process may not have completed its computation. if
WAITFORRESULT is T, PROCESS.RESULT blocks until PROC
finishes executing. Otherwise, it returns NIL immediately.

6.4.7 Mapping Across Processes

 You may apply a function to all processes using the function
MAP.PROCESSES, which takes the form:

PROCESS MANAGEMENT

326

 Function: MAP.PROCESSES
 # Arguments: 1
 Arguments: 1) MAPFN, a mapping function
 Value: NIL

 MAP.PROCESSES applies MAPFN to all known processes.
MAPFN is a function of three arguments:

1. the process handle;
2. the process name; and
3. the process form.

 Consider the following example where I have defined
PRINT.PROCESS as a rather simple function:

<-(MAP.PROCESSES (FUNCTION PRINT.PROCESS))
The process name is: EXEC
The process name is: MOUSE
The process name is: \DLRS232C.WATCHER
The process name is: \10MBWATCHER
The process name is: \NSGATELISTENER
The process name is: \TIMER.PROCESS
The process name is: BACKGROUND
NIL

where PRINT.PROCESS is defined as:

(DEFINEQ (PRINT.PROCESS (X)
 (PRIN1 "The process name is:")
 (SPACES 2)
 (PRIN1 (PROCESSPROP X 'NAME))
 (TERPRI)
))
(PRINT.PROCESS)

PROCESS MANAGEMENT

327

6.5 Process Control Functions

 Interlisp provides a standard set of process control functions that
allow you to control the execution of individual processes according
to the availability of data, the state of the computation, or the time of
day.

6.5.1 Suspending a Process

 You may suspend a process using the function
SUSPEND.PROCESS, which takes the form:

 Function: SUSPEND.PROCESS
 # Arguments: 1
 Arguments: 1) PROC, a process handle
 Value: The process handle.

 SUSPEND.PROCESS blocks the specified process indefinitely,
i.e., it will not be scheduled for execution until it is awoken by another
process. Consider the following example:

<-(SUSPEND.PROCESS XP)
{PROCESS}#55,56400

 You may cause the current process to block indefinitely using
the following form:

<-(SUSPEND.PROCESS (THIS.PROCESS))

6.5.2 Awakening a Process

 When a process is blocked, it is not executable. You may block a
process (as explained below) for a short time or indefinitely. A process
blocked on a timer is awoken when its timer expires. Suspended

PROCESS MANAGEMENT

328

process do not awake unless explicitly awoken by another process.
You may awake a process which is blocked using the function
WAKE.PROCESS, which takes the form:

 Function: WAKE.PROCESS
 # Arguments: 2
 Arguments: 1) PROC, a process handle
 2) STATUS, a status to be returned
 Value: T

 WAKE.PROCESS explicitly awakens the specified process and
causes it to call BLOCK with no arguments to obtain its status. When
the process that was awakened calls BLOCK, it will receive the value
of STATUS as its status. The process is scheduled for execution, but
will not executed until it arrives at the top of the schedule queue.

 WAKE.PROCESS will awaken a process blocked on a timer
before the timer expires. Consider the following example:

<-(SUSPEND.PROCESS XP)
{PROCESS}#55,107600

<-(PROCESSPROP XP 'STATUS)
0

<-(WAKE.PROCESS XP 100)
T

 You may invoke WAKE.PROCESS on a blocked process many
times before it is actually executed. In this case, it receives only the
most recent STATUS.

6.5.3 Blocking a Process

PROCESS MANAGEMENT

329

 A process may be blocked on a timer for a specified period of time
using the function BLOCK, which takes the form:

 Function: BLOCK
 # Arguments: 2
 Arguments: 1) MSECWAIT, milliseconds to wait
 2) TIMER, an interval timer
 Value: A status.

 When BLOCK is called, the current process yields control to the
next process which is ready to execute, assuming any is ready to run.
If BLOCK is called without any arguments, the process remains
executable, but is forced to the end of the scheduling queue.

 If MSECSWAIT is specified, it is the number of milliseconds to
wait before rescheduling the process. Consider the following example:

 If MSECSWAIT is T, the process waits indefinitely, e.g., it is
suspended. In this case, the process must be explicitly awoken via
WAKE.PROCESS.

 TIMER can be specified as a millisecond timer which is created
by SETUPTIMER. In this case, TIMER is an absolute time at which
the process will be awoken.

 The effect of BLOCK may be terminated by CTRL-D, CTRL-E,
or CTRL-B as well.

<-(BLOCK 1000)
"{timer interval expired}"

when executed in the Exec Window.

6.5.4 Dismissing a Process

PROCESS MANAGEMENT

330

 You may dismiss the current process for a given period of time,
e.g., force it to be rescheduled some relative time in the future using
the function DISMISS, which takes the form:

 Function: DISMISS
 # Arguments: 3
 Arguments: 1) MSECSWAIT, the milliseconds to
 wait
 2) TIMER, an interval timer
 3) NOBLOCK, a flag
 Value: The value of MSECWAIT.

 When you run the example of PROCESS.DEMO given above in
multiple windows, you will see the windows stop and start printing at
different times. This is because after every SETQ of A (see the code
for PROCESS.DEMO), we do an immediate DISMISS. More
interesting effects can be accomplished by dismissing for a random
amount of time.

6.5.5 Evaluating Expressions in a Processes' Context

 Each process has its own contex stack. Usually, expressions are
evaluated within the context of a specific process. There are often
general expressions applicable across a set of processes which can be
executed in any processes' context. Interlisp provides three functions
for evaluating arbitrary functions in a processes' context.

6.5.5.1 Evaluating a Variable in Context

 You may evaluate a variable within a processes' context using the
function PROCESS.EVALV, which takes the form:

 Function: PROCESS.EVALV
 # Arguments: 2
 Arguments: 1) PROC, a process handle

PROCESS MANAGEMENT

331

 2) VAR, a variable name
 Value: The value of VAR in the processes'
 context.

 PROCESS.EVALV evaluates the variable within the processes'
context by executing (EVALV VAR) in the stack context of PROC.
Consider the following example in the environment of the process
represented by XP (actually an instance of PROCESS.DEMO):

<-XP
{PROCESS}#56,56100

<-(PROCESS.EVALV XP 'X)
300

after XP has been executing for awhile.

6.5.5.2 Evaluating an Expression in a Processes' Context

 You may evaluate an expression within a processes' context using
the function PROCESS.EVAL, which takes the form:

 Function: PROCESS.EVAL
 # Arguments: 3
 Arguments: 1) PROC, a process handle
 2) FORM, an expression to be evaluated
 3) WAITFORRESULT, a flag
 Value: The value of the expression.

 PROCESS.EVAL evaluates FORM in the stack context of PROC.
All variables occurring in FORM are bound within the context of
PROC. Consider the following example:

<-(PROCESS.EVAL XP 'X)
320

PROCESS MANAGEMENT

332

<-(PROCESS.EVAL XP '(SETQ X 400))
400

<-(PROCESS.EVAL XP 'X)
402

 Any errors that occur in evaluating FORM will occur within the
context of PROC. Thus, they must be handled within that context. The
IRM notes that the following forms will achieve different results:

 (PROCESS.EVAL PROC '(NLSETQ <form>))

 (NLSETQ (PROCESS.EVAL PROC <form>))

 If WAITFORRESULT is true, the current process is blocked until
the evaluation is completed. Otherwise, the current process continues
to run in parallel with the evaluation.

6.5.5.3 Applying a Function to Arguments in a Context

 You may apply a function to a set of arguments within a processes'
context using the function PROCESS.APPLY, which takes the form:

 Function: PROCESS.APPLY
 # Arguments: 4
 Arguments: 1) PROC, a process handle
 2) FN, a function
 3) ARGS, a list of arguments
 4) WAITFORRESULT, a flag
 Value: The value of FN when applied to the
 arguments.

 PROCESS.APPLY applies the function FN to the argument list
within the stack context of PROC. If the process is currently

PROCESS MANAGEMENT

333

suspended, Interlisp will print the message "<process handle> not a
live process".

6.6 Interprocess Communication

 An event is a synchronizing mechanism used to coordinate the
actions of two or more processes. The typical paradigm used is the
"producers and consumers" model familiar to most users through their
study of operating systems. In this model, consumers wait on events
while producers notify events.

 Interlisp provides a simple event mechanism that allows you to
coordinate the actions of processes within your program. Every event
has the structure presented in Table 6-5.

Table 6-5. Event Structure

Field Usage

EVENTNAME The name given to CREATE.EVENT.
EVENTQUEUETAIL Pointer to the next event.
EVENTWAKEUPPENDING A list of processes waiting on the event.

 You are free to choose the meaning of each event that you create.
Generally, the idea of an event is to let some process or set of processes
know that something interesting has happened which they should
examine. It is up to the receiving processes to determine the
significance of the event.

 Processes may be awoken from waiting on an event either by the
occurrence of the event or because the waiting period expired (if
specified). You must write your processes so that they can handle
either case correctly.

PROCESS MANAGEMENT

334

 Note that Interlisp does not provide for the passing of messages
through events unlike other event mechanisms. The Interlisp event
mechanism is a pure signalling mechanism.

6.6.1 Creating an Event

 You may create an event using the function CREATE.EVENT,
which takes the form:

 Function: CREATE.EVENT
 # Arguments: 1
 Arguments: 1) NAME, the name of the event
 Value: An event object handle.

 CREATE.EVENT builds a data structure that represents the event
and links it into the event queue. NAME is an arbitrary value chosen
by you which may be used for obtaining status information or for
debugging. Consider the following example:

<-(SETQ EV1 (CREATE.EVENT 'EVENT-1))
{EVENT}#54,110650

6.6.2 Awaiting an Event

 A consumer process awaits the occurrence of an event before
proceeding with its computation in the typical "producers and
consumers" model. You may cause a process to wait for an event by
executing AWAIT.EVENT, which takes the form:

 Function: AWAIT.EVENT
 # Arguments: 3
 Arguments: 1) EVENT, the handle of an event
 2) TIMEOUT, the waiting period
 3) TIMERP, a millisecond timer
 Value: The value of EVENT.

PROCESS MANAGEMENT

335

 AWAIT.EVENT suspends the current process until the given
event is notified or until a timeout occurs. It returns the handle of the
event.

 If TIMEOUT is NIL, there is not timeout period and the process
waits until EVENT is notified, but possibly forever. TIMEOUT
should be a number representing the milliseconds to wait.

 If TIMERP is non-NIL, it is a millisecond timer set to expire at
the time specified when it is created by SETUPTIMER.

Consider the following example:

<-(SETQ XP (ADD.PROCESS '(PROCESS.DEMO)))
{PROCESS}#54,106500

 Now, the process has blocked on EV1 because it has executed the
statement (AWAIT.EVENT EV1). Because TIMEOUT is NIL, the
process will wait forever or until a NOTIFY.EVENT call is issued to
restart it.

6.6.3 Signalling Completion of an Event

 A producer "notifies" an event when it wants to signal one or more
other processes that they may proceed with corollary computations. A
process notifies an event using the function NOTIFY.EVENT, which
takes the form:

 Function: NOTIFY.EVENT
 # Arguments: 2
 Arguments: 1) EVENT, an event handle
 2) ONCEONLY, a flag
 Value: NIL

PROCESS MANAGEMENT

336

 NOTIFY.EVENT causes those processes waiting for event to be
awakened and placed in an executable state. Each process is awoken
with the value of EVENT.

 If ONCEONLY is true, only the first process waiting on the event
will be awoken and placed in the executable state.

 Care should be exercised in using this option. It is your
responsibility to ensure that only one process can respond to the event
at once or, if multiple processes can respond, that the order of their
responding does not affect the computation.

 Continuing with the example above, I notify event EV1 upon
which process XP is waiting as follows:

<-(NOTIFY.EVENT EV1)
NIL

which causes XP to be awoken.

6.7 Monitors: Sharing Data Structures

 Cooperating processes often need to share information during a
computation. The event mechanism permits processes to signal each
other when some action should be performed, but does not provide a
mechanism for communicating information. Hoare defined the
concept of monitors to provide shared, but mutually exclusive, access
to data structures by more than one process.

 Interlisp has implemented a simple monitor mechanism which
allows two or more processes to share a data structure on a mutually
exclusive basis. Monitors are represented by objects called monitor

locks, which are created by a process and associated with some data
structure which is shared, but must be protected from simultaneous
access.

PROCESS MANAGEMENT

337

 Monitor locks have the data structure presented in Table 6-6.

Table 6-6. Monitor Lock Structure

Field Usage
MLOCKLINK Link to next monitor lock in the list.
MLOCKNAME The name of the monitor lock.
MLOCKOWNER The handle of the process creating the

monitor lock.
MLOCKQUEUETAIL The last monitor lock in the queue.
MLOCKPERPROCESS The number of monitor locks per

process.

 When a process is deleted, any locks it owns are released.

6.7.1 Creating a Monitor

 You may create a monitor lock using the function
CREATE.MONITORLOCK, which takes the form:

 Function: CREATE.MONITORLOCK
 # Arguments: 1
 Arguments: 1) NAME, the name of the monitor
 lock
 Value: A monitor lock handle.

 CREATE.MONITORLOCK builds a data structure which
contains the information about the monitor and returns the handle of
the monitor lock object. NAME is used for obtaining status
information or for debugging.

Consider the following example:

PROCESS MANAGEMENT

338

<-(SETQ ML1 (CREATE.MONITORLOCK 'LOCK-
1))
{MONITORLOCK}#71,16570

6.7.3 Evaluating Expressions under a Monitor Lock

 Medley Interlisp provides two mechanisms for using monitor
locks which may be termed the slow and fast versions. The primary
difference is that the slow version is implemented using RESETLST
in order to handle errors that may occur, while the fast version is not.
These two mechanisms take the form:

 Macro: WITH.MONITOR
 WITH.FAST.MONITOR
 # Arguments: 2-N
 Arguments: 1) LOCK, a monitor lock handle
 2-N) FORM1 - FORMn, expressions
 Value: The value from evaluating the last
 form.

 Each of these macros evaluates the specified expressions while
owning the given monitor lock. Ownership of the lock is dynamically
scoped, e.g., if the current process already owns the lock, evaluation
of the expressions proceeds forthwith. This may occur when a function
is called by another function within the process which was already
executing within a WITH.MONITOR macro for the specified monitor
lock.

 The RESETLST is used to free the lock if an error occurs while
any of the FORMs are being evaluated.

WITH.MONITOR takes the form:

((LOCK . FORMS)
 (RESETLST

PROCESS MANAGEMENT

339

 (OBTAIN.MONITORLOCK LOCK NIL T)
 (PROGN . FORMS)
))

 WITH.FAST.MONITOR acts like WITH.MONITOR, but is not
implemented with a RESETLST. User interrupts (e.g., CTRL-E) are
inhibited while executing within this macro. Moreover, since there is
no error protection, the specified forms must never terminate in error
because the lock will not be released. Thus, this macro is often used
for small, safe computations which are error-free and are non-
interruptable. WITH.FAST.MONITOR takes the form:

((LOCK . FORMS)
 (UNINTERRUPTABLY
 ((LAMBDA (UNLOCK)
 (PROG1
 (PROGN . FORMS)
 (AND
 (NEQ UNLOCK T)
 (RELEASE.MONITORLOCK UNLOCK))
))
 (OBTAIN.MONITORLOCK LOCK)
))
))

6.7.4 Awaiting a Monitor Event

 When one process is accessing a shared data structure, all other
processes should wait until the data structure is free. Thus, cooperating
processes must signal each other when they have completed operation
upon a shared data structure. You may use the function
MONITOR.AWAIT.EVENT, which takes the form:

 Function: MONITOR.AWAIT.EVENT
 # Arguments: 4

PROCESS MANAGEMENT

340

 Arguments: 1) RELEASELOCK, a monitor lock
 handle
 2) EVENT, an event handle
 3) TIMEOUT, a waiting period
 (optional)
 Value: NIL

 MONITOR.AWAIT.EVENT is used to block processing inside
a monitor. It releases the lock and then executes a call to
AWAIT.EVENT. When the process is awoken, it reobtains the lock.

 MONITOR.AWAIT.EVENT is often used when a process wants
to perform an operation on a data structure, but expects the data
structure to have a certain configuration or state. It uses a monitor
lock to ensure that the state of the structure does not change between
the time it tests the state and when it performs the operation. If the
state is not the correct one, the process can wait for some other
process to make it the correct state, whence it can proceed with the
operation. In the mean time, it releases the lock so that other
processes can have access to the data structure (including the process
which will make the state correct).

 The form for this usage might appear as (according to the IRM):

 (WITH.MONITOR <object>-LOCK
 (until <test condition of object>
 do
 (MONITOR.AWAIT.EVENT <object>-LOCK
 <object>-CHANGED-EVENT
 <object>-TIMEOUT)
 <operate on object>)
)
)

PROCESS MANAGEMENT

341

 The IRM suggests that this form is "cleaner" (read "more
efficient") because it saves the RESETLST processing performed in
WITH.MONITOR.

 The IRM notes that there must not be an ERRORSET invocation
between the enclosing WITH.MONITOR and the call to
MONITOR.AWAIT.EVENT, because such an ERRORSET would
catch any calls to ERROR! and continue within the monitor. This is
not the condition you want since the monitor lock is not reobtained.

6.7.5 Obtaining a Monitor Lock

 A process may take possession of a monitor lock, waiting if
necessary until it is free, using the function
OBTAIN.MONITORLOCK, which takes the form:

 Function:
 OBTAIN.MONITORLOCK
 # Arguments: 3
 Arguments: 1) LOCK, a monitor lock
 handle
 2) DONTWAIT, a flag
 3) UNWINDSAVE, a flag
 Value: The monitor lock handle.

 OBTAIN.MONITORLOCK takes possession of LOCK, but
waits until it is free. It returns the monitor lock handle if the lock is
successfully obtained. If the process already owns the monitor lock,
it returns T.

 If DONTWAIT is non-NIL, OBTAIN.MONITORLOCK
returns NIL immediately.

 If UNWINDSAVE is non-NIL, it wraps the action of taking the
monitor lock in a RESETSAVE expression.

PROCESS MANAGEMENT

342

6.7.6 Releasing a Monitor Lock

 A process may release a monitor lock using the function
RELEASE.MONITORLOCK, which takes the form:

 Function:
 RELEASE.MONITORLOCK
 # Arguments: 2
 Arguments: 1) LOCK, a monitor lock
 handle
 2) EVENIFNOTMINE, a
 flag
 Value: NIL

 RELEASE.MONITORLOCK releases the specified lock if it is
owned by the current process. When a lock is released the next waiting
process, which is waiting to obtain the lock, is awoken.

 EVENIFNOTMINE, if non-NIL, is a flag which permits a
process to release a lock even if it does not own it. This flag is useful
for freeing "frozen" locks where the evaluation within the lock has
somehow failed without freeing the lock. It should be used
judiciously.

INDEX

343

Index

ADD.PROCESS, 310
AREA.OF.RECTANGLE,

280
AWAIT.EVENT, 334
Bravo Text Editor, 14
Break Package, 191

AUTOBACKTRACEFLG,
159

BREAKREGIONSPEC,
160

MaxBkMenuHeight, 158
BreakPackage

CLOSEBREAKWINDOW
FLG, 160

MaxBkMenuWidth, 158
BRUSHBITMAP, 255
CENTER, 278
CREATE.EVENT, 334
CREATE.MONITORLOC

K, 337
curve, 265
DC, 93
DEdit, 88
DEDITCOMS, 108
DEDITIT, 95
DEFAULT.INSPECTW.PR

OPCOMMANDFN, 181
DEFAULT.INSPECTW.TI

TLECOMMANDFN, 182

DEL.PROCESS, 314
DF, 89
DISMISS, 330
DISPLAY.RECTANGLE,

274
DISPLAYHELP, 117
DP, 92
DRAWBETWEEN, 264
DRAWCIRCLE, 281
DRAWCURVE, 265
DRAWELLIPSE, 283
DRAWGRAYBOX, 268
DRAWLINE, 262
DRAWPOINT, 248
DRAWTO, 258
DUMPGRAPH, 240
DV, 90
EDITGRAPH, 230
EDITGRAPH1, 231
EXPAND.RECTANGLE,

279
Face Menu, 29
FILLCIRCLE, 288
FILLPOLYGON, 285
FIND.PROCESS, 323
FLIPNODE, 237
Font Menu, 28
GIVE.TTY.PROCESS, 301
graph, 197

INDEX

344

Graph
DEFAULT.GRAPH.NOD

ELABELSHADE, 206
GRAPH.ADDLINKFN,

201
GRAPH.ADDNODEFN,

200
GRAPH.DELETELINKF

N, 202
GRAPH.MOVENODEFN,

199
TOPJUSTIFYFLG, 213

Grapher
DIRECTEDFLG, 198
GRAPH.DELETENODEF

N, 201
GRAPHEROBJ, 235
NODECREATE, 207
SHOWGRAPH, 211

GRAPHREGION, 236
HASTTYWINDOWP, 302
HEIGHT, 277
INSPECT, 162
inspect window, 170
Inspect Window

FETCHFN, 178
PROPCOMMANDFN,

180
PROPERTIES, 175
PROPPRINTFN, 183
SELECTIONFN, 183
STOREFN, 179
TITLE, 175
VALUECOMMANDFN,

181

Inspect WIndow
TITLECOMMANDFN,

182
INSPECT/ARRAY, 168,

193
INSPECTCODE, 164
Inspector, 161

INSPECTMACROS, 194
INSPECTPRINTLEVEL,

193
MAXINSPECTARRAYL

EVEL, 193
MAXINSPECTCDRLEVE

L, 193
INSPECTW, 172
INSPECTW.CREATE, 172
INSPECTW.FETCH, 190
INSPECTW.PROPERTIES

, 188
INSPECTW.REDISPLAY,

184
INSPECTW.REPLACE,

184
INSPECTW.SELECTITE

M, 186
INSTALLBRUSH, 248
LAYOUTFOREST, 232
LAYOUTGRAPH, 218, 233
LAYOUTSEXPR, 233
LOGOUT, 318
LOWERLEFT, 273
MAP.PROCESSES, 325
monitor lock, 340
monitor locks, 336

INDEX

345

MONITOR.AWAIT.EVEN

T, 339
monitors, 336
NOTIFY.EVENT, 335
OBTAIN.MONITORLOC

K, 341
OPENTEXTSTREAM, 65
PAINTW.READBRUSHSH

ADE, 252
PAINTW.READBRUSHSH

APE, 250
PAINTW.READBRUSHSI

ZE, 251
process, 290
process handle, 290
Process Macro

WITH.FAST.MONITOR,
339

WITH.MONITOR, 338
Process Property

AFTEREXIT, 318
BEFOREEXIT, 318
BUTTONEVENTFN, 303
WINDOWENTRYFN, 300

PROCESS.APPLY, 332
PROCESS.EVAL, 331
PROCESS.EVALV, 330
PROCESS.FINISHEDP, 321
PROCESS.RESULT, 325
PROCESS.RETURN, 324
PROCESS.STATUS.WINDO

W, 308, 310
PROCESSP, 319
PROCESSPROP, 315
PROCESSWORLD, 307

READGRAPH, 242
rectangle, 270
RECTANGLE, 271
RELDRAWTO, 260
RELEASE.MONITORLO

CK, 342
RELPROCESSP, 320
RESET/NODE/BORDER,

238
RESTART.PROCESS, 323
SET.TTYINEDIT.WINDO

W, 142
SPAWN.MOUSE, 303
structure editor, 88
SUSPEND.PROCESS, 327
TEdit, 16

AFTERQUITFN, 44
BACKSPACE key, 22
CARETLOOKSFN, 45
Character Looks Menu, 31
CHARLOOKS object, 62
Command Menu, 23
CTRL key, 20
DEL key, 22
editing pane, 17
ESC key, 22
Expanded Menu command,

29
Find command, 26
Format Specification

object, 63
Get command, 25
Include command, 25
Line Cache object, 61
Line Descriptor Object, 56

INDEX

346

LOOKS, 44
Looks command, 28
Page Layout Menu, 35
Paragraph Looks Menu, 34
piece, 59
prompt pane, 17
Put command, 24
Quit command, 26
QUITFN, 41
SEL, 42
Selection Object, 54
SHIFT key, 21
Substitute command, 27
TEDIT.DEFAULT.FONT,

40
TEDIT.EXTEND.PENDIN

G.DELETE, 84
TERMTABLE, 42
Text Object, 47
THISLINE object, 60
TITLEMENUFN, 44
type-in point, 22
UNDO key, 22

TEDIT, 38
TEDIT.COPY.LOOKS, 82
TEDIT.DEFAULT.FMTSPE

C, 84
TEDIT.DELETE, 73
TEDIT.FIND, 74
TEDIT.GET.LOOKS, 81
TEDIT.GETSEL, 69
TEDIT.HARDCOPY, 76
TEDIT.INSERT, 71
TEDIT.LOOKS, 77

TEDIT.MOVESELECTION,
86

TEDIT.QUIT, 84
TEDIT.READTABLE, 86
TEDIT.SELECTION, 85
TEDIT.SETSEL, 67
TEDIT.SHIFTEDSELECTIO

N, 85
TEDIT.SHOWSEL, 69
Text Editor, 16
Text Stream, 46
TEXTSTREAM, 66
THIS.PROCESS, 322
TTY.PROCESS, 297
TTY.PROCESSP, 298
TTYIN, 114

?ACTIVATEFLG, 145
DEFAULTPROMPT, 115
ECHOTOFILE, 126
TTYINAUTOCLOSEFLG

, 144
TTYINCOMPLETEFLG,

145
TTYINERRORSETFLG,

145
TTYINREADMACROS,

148
TTYINRESPONSES, 149
TYPEAHEADFLG, 114,

144
TTYIN macro

?=, 134
TTYIN Macro

BUF, 133
ED, 132

INDEX

347

EE, 133
FIX, 134
TV, 133

TTYIN.PRINTARGS, 137
TTYIN.SCRATCHFILE,

143
TTYINEDIT, 139

Type Size Menu, 28
UPPERRIGHT, 273
WAIT.FOR.TTY, 299
WAKE.PROCESS, 328
WBREAK, 157
WIDTH, 277

